LibD3C: Ensemble classifiers with a clustering and dynamic selection strategy



          Install libD3C into weka (Linux environment)

         make sure you have installed libSVM package in your weka!!!


          Environmental requirements:     JDK1.6 or upwards, Weka3.7 or upwards


    (1)Download the latest version of the weka software, and extract file:


weka


(2) Configuration environment (Under the /etc/profile file):


WEKAHOME is the installation path of weka

weka环境变量


(3)Install LibSVM package with command:


java weka.core.WekaPackageManager -install-package LibSVM


(4)Install LibD3C package and download classifiers.xml with command:


java weka.core.WekaPackageManager -install-package http://lab.malab.cn/soft/LibD3C/LibD3C.zip


wget http://lab.malab.cn/soft/LibD3C/classifiers.xml


下载libD3C

下载classifiers.xml

(5)Run LibD3C package with command:


java weka.Run LibD3C -t data/iris.arff -target-correct-rate 1.0 -I 0.05 -validation-ratio 0.2 -ensemble-vote-rule 1 -K 10 -circle-combination-algorithm 3 -selective-algorithm 1 -num-slots 1 -classifiers-xml filePath of your classifiers.xml -time-out 20 -S 1


Tips:

       Currently it is not supported to change only part of the parameters.

       If you want to modify the parameters, you need to pass all the parameters to the classifier.

       We will update it as soon as possible!


run

(6)Result


run


All Rights Reserved Copyright @ 2021|Dr. GuoJisheng
Last Modified in 2021/4/30