MRMD3.0使用了多种特征选择方法,并集合了PageRank,LeaderRank,Hits和TrustRank算法。
代码: github
环境(如若安装anaconda,无需执行下面的命令):
pip3 install -r requirements.txt --ignore-installed
parameters | description |
---|---|
-s, --start | start index, default=1 |
-i, --inputfile | input file (require:arff ,csv or libsvm format) |
-e, --end | end index, default=-1 |
-l, --length | step length, default=1 |
-n, --n_dim | mrmd2.0 features top n,default=-1 |
-t, --type_metric | evaluation metric, default=f1 |
-m, --metrics_file | output the metrics file’s name |
-o, --outfile | output the dimensionality reduction file’s name |
-p, --picture | The scatter plots before and after dimension reduction are generated by tsne,defalult=false |
-r, --rank_method | the rank method for features,choices=[“PageRank”,“Hits_a”,“Hits_h”,“LeaderRank”,“TrustRank”],default=“PageRank” |
—————————————————— | ———————————————— |
python3 mrmd2.0.py -i test.csv -o out.csv -r PageRank
python3 mrmd3.0.py -i test.csv -o out.csv -r LeaderRank
python3 mrmd3.0.py -i test.csv -o out.csv -r TrustRank
python3 mrmd3.0.py -i test.csv -o out.csv -r Hits_a
python3 mrmd3.0.py -i test.csv -o out.csv -r Hits_h
method | the number of the implement method |
---|---|
anova | *1 f_classif |
chisquare | *1 chi2 |
F value | *1 f_regression |
linear model | *3 Lasso,LogisticRegression,Ridge |
mutual inforamtion | *3 MI NMI MIC |
mrmd | *3 pearson+Euclidean/Tanimoto/Cosine |
mrmr | *2 miq |
recursive feature elimination | *5 inearSVC,LogisticRegression, RandomForestClassifier,GradientBoostingClassifier, ComplementNB |
tree_feature_importance | *3 DecisionTreeClassifier,RandomForestClassifier,GradientBoostingClassifier |
联系方式: heshida@tju.edu.cn