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Abstract: DNase I hypersensitive sites (DHSs) associate with a wide variety of 
functional genomic elements. Successful prediction of DHSs in computational 
models would dramatically accelerate the annotation of the human genome.  
In this study, a method of Increment of Diversity with Quadratic Discriminant 
analysis (IDQD) is presented for DHSs prediction in K562, CD4+ T, Hela and 
GM06990 cell lines. The average accuracies of 10-fold cross-validation test  
are 98.52%, 96.50%, 99.25% and 97.58%, respectively, and the mean areas 
under ROC curves (auROC) are all greater than 0.90. The prediction results 
indicate that the IDQD method is an effective tool for DHSs recognition. 
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1 Introduction 

A major challenge of modern biology is the comprehensive delineation of functional  
non-coding sequences that regulate transcription and other chromosomal processes  
in the human genome. Several genome-wide strategies have been developed to  
identify the location of gene regulatory elements, such as sequence conservation, 
chromatin immunoprecipitation followed by microarray hybridisation (ChIP-chip) and 
computational analyses. Among these methods, one classical experimental method, 
mapping of DNase I Hypersensitive Sites (DHSs), has gradually made its way into the 
genomics domain for identifying the location of regulatory elements since 1980s. 
Regions of the genome that are hypersensitive to digestion by deoxyribonuclease I  
are generally nucleosome-free and associate with a wide variety of functional genomic 
elements, including promoters, enhancers, insulators, silencers, Locus Control Regions 
(LCRs) and suppressors (Gross and Garrard, 1988; Felsenfeld, 1992; Li et al., 2002; 
Felsenfeld and Groudine, 2003). Thus, mapping of DHSs by Southern blotting has 
become a gold-standard approach for discovering functional non-coding sequences 
involved in gene regulation. 

Unfortunately, whereas progress has been made in identifying DHS sequences  
(sequences containing DHS), the traditional Southern blotting technique is not readily 
scalable to study the large chromosomal regions and thus precludes its use in systematic 
whole-genome analyses. Recently, novel methods for large-scale mapping of DHSs have 
been applied (Sabo et al., 2004; Dorschner et al., 2004; Crawford et al., 2006), providing 
an unprecedented opportunity for the computational identification of large numbers of 
DHS sequences that can be utilised in systematic study of transcriptional regulation and 
other functional elements in a genome. On the basis of these experimental data, Noble  
et al. (2005) trained a Support Vector Machine (SVM) model in K562 cell line  
and achieved an accuracy of 0.852 for DHS sequences recognition in a 10-fold  
cross-validation test. Therefore, the computational prediction will be an important 
complement to the experimental identification of DHS sequences in different tissues. 

In this paper, a new method of increment of diversity with quadratic discriminant 
analysis, called IDQD, is presented to DHSs identification. The Increment of Diversity 
(ID) was first introduced by Laxton (1978) and employed in biogeography. For the 
purpose of improving prediction capability, the ID method combined with Quadratic 
Discriminant analysis (IDQD) was proposed and successfully applied in the prediction  
of exon–intron splice sites for several model genomes including human (Zhang and  
Luo, 2003). The method has also been used in the prediction of transcription start sites 
(Lu and Luo, 2007) and protein classification (Lin and Li, 2007). Here, the IDQD method 
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is generalised to the prediction of DHS sequences in multiple cell lines. The results  
of 10-fold cross-validation test indicate that our approach for DHSs prediction  
is complementary to, and equally predictive as, the SVM model proposed by  
Noble et al. (2005). 

2 Materials and methods 

2.1 Materials 

The experimentally verified 280 DHS sequences and 731 non-DHS sequences in  
human K562 erythroid cell line were extracted from noble.gs.washington.edu/proj/hs  
(Noble et al., 2005). Both types of sequences were similar in size (mean length 242.1 bp 
vs. 242.8 bp) and constituted the positive and negative training samples, respectively. 

To test the universality of the IDQD method in DHSs recognition, DHS sequences 
from other three cell lines, namely CD4+

 T, Hela and GM06990, are downloaded from 
http://hgdownload.cse.ucsc.edu/goldenPath/hg17/encode/database/. Considering the DHS 
sequences typically comprise a core site-forming domain of about 150~250 bp in size 
(Gross and Garrard, 1988; Lowrey et al., 1992), sequences of 200~300 bp in length  
were chosen as candidates for positive samples. Since there is no detailed data on  
non-DHS sequences in these three cell lines, four 250 bp segments were appropriately 
extracted as negative samples for each selected positive sequence, two from its upstream 
and two from its downstream 2 kb of the DHS sequence. Thus, in these three cell lines, 
194, 98, 168 positive samples and 776, 392, 672 negative samples were obtained, 
respectively. 

2.2 Increment of diversity 

In the state space of s dimensions, the diversity measure for any diversity source  
S: {n1, n2, …, ns} is defined as (Laxton, 1978; Li and Lu, 2001): 

1 2 2 2
1 1

( ) ( , , , ) log log
s s

s i i i
i i

D S D n n n N N n n N n
= =

= = − =∑ ∑…  (1) 

here ni is the occurrences of the ith character in the diversity source S, and if ni equals 
zero, then ni log2 ni = 0. 

For an arbitrary sequence X to be predicted, in the same parameter space, the 
increment of diversity of sequence X with standard source S is defined as follows: 

ID( , ) ( ) ( ) ( )X S D X S D X D S= + − −  (2) 

here D(X + S) denotes the diversity measure of the mixed diversity source S + X . D(X) 
and D(S) are the diversity measures of the diversity sources S and X, respectively. 
ID(X + S) gives the relation of sequence X with standard source S. The smallest the 
ID(X + S) is, the most intimate the relation of the inquired sequence X to standard source 
S is. 
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2.3 Quadratic discriminant analysis 

To recognise a sequence, one should introduce several increment of diversities, say, 
R = (ID1, …, IDr) of r-dimensional vector. Thus, for each sample X, there will be an  
r-dimensional feature vector R(X). Let the standard set (positive set) denoted by G1 and 
the contrast set (negative set) denoted by G2. The discriminant function that differentiates 
with the potential sequence X belonging to positive or negative set is defined as follows 
(Zhang and Luo, 2003; Lu and Luo, 2007; Luo and Lu, 2007): 

{ } ( )1 1
2 1 2 1 1 2 2 21 2 1 2

log ( ) ( ) ( ) ( ) 2 1 2logT TN N R R R Rξ µ µ µ µ− −= − − − − − − −∑ ∑ ∑ ∑  (3) 

here µi is the average of R over all Ni samples of positive (i = 1) or negative set (i = 2) 
and ∑i is the corresponding r × r covariance matrix. The parameter ξ gives an order of 
sample X. When ξ > ξ0, X is classified into positive set and when ξ ≤ ξ0, X is classified 
into negative set. In the common use of quadratic discriminant analysis, the threshold  
ξ0 is taken to be 0. However, as there is large difference in size between positive and 
negative sets, the optimal threshold ξ0 may not be 0. It should be empirically determined 
in principle to obtain optimal prediction. 

2.4 Information extraction from DHS sequences 

Setting the polynucleotide composition of DHS sequence as the source of information, 
five k-mers (k = 3, 4, …, 7) were selected as the feature variables for DHSs recognition. 
Using the occurrence frequency of k-mers in arbitrary sequence X, we can define the  
five diversities of sequence X as D(X1), D(X2), …, D(X5) according to equation (1),  
and the corresponding IDs between D(Xi) (i = 1, 2, …, 5) and standard source in  
positive (negative) training set as I1(I2), I3(I4), …, I9(I10) according to equation (2).  
In addition, since about 60% of the DHSs are enriched within CpG islands in human 
genome, the G + C content in each sequence was calculated and defined as  
another feature variable I11. Any sample is, therefore, depicted by a discrete vector 
R = (I1, I2, …, I11). 

2.5 Performance assessment 

The performance of our method can be measured in terms of sensitivity (Sn), specificity 
(Sp) and accuracy (Acc). They are defined through True Positives (TP), True Negatives 
(TN), False Positives (FP) and False Negatives (FN) by the following equations. 

( )Sn TP TP FN= +  (4) 

( )Sp TN TN FP= +  (5) 

( ) ( ).Acc TP TN TP TN FP FN= + + + +  (6) 

Since the only adjustable parameter that exists in IDQD method is the threshold ξ0, the 
sensitivity and specificity vary with ξ0. The best choice of ξ0 is obtained by adjustive 
optimisation of sensitivity and specificity. In the meantime, by varying ξ0 and plotting  
the ROC curve that gives the relation between True Positive rate and False Positive  
rate at different threshold values, the ROC score was obtained, which evaluates  
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the performance of the method globally, irrespective of the threshold choice  
(Akobeng, 2007). 

3 Results 

To objectively evaluate the performance of IDQD method on DHS and non-DHS 
sequences classification, 10-fold cross-validation test was adopted. Given the threshold 
ξ0 = −2.45 that maximised the prediction accuracy, the results on DHS sequences 
recognition in K562 cell line are shown in the first line of Table 1. 

The average sensitivity, specificity, accuracy and the mean ROC score of 10-fold 
cross-validation test are listed in the third to sixth columns of the table. The prediction 
results on K562 cell line demonstrate that the accuracy of IDQD used in DHS recognition 
is comparable with that of the SVM method published in a recent literature  
(Noble et al., 2005). 

To test the universal applicability of the IDQD method in DHSs recognition,  
the method was generalised to other three cell lines: CD4+

 T, Hela and GM06990.  
For comparison, the predictive results calculated by use of Nobel’s SVM method were 
also listed in the table. 

Table 1 The prediction results of IDQD method for DHSs recognition in different cell lines 

Cell line Method Sn (%) Sp (%) Acc (%) auROC 

SVMa 73.91 88.61 85.29 0.842 K562 

IDQD (ξ0 = –2.45) 95.83 98.06 98.52 0.996 
SVMb 76.23 88.45 86.46 0.865 CD4+T 

IDQD (ξ0 = 0.21) 92.34 98.23 96.50 0.990 
SVMb 75.12 89.31 84.13 0.854 Hela 

IDQD (ξ0 = 1.20) 98.31 99.53 99.25 0.999 
SVMb 79.59 90.47 88.47 0.895 GM06990 

IDQD (ξ0 = –0.77) 92.24 98.53 97.58 0.994 
aResults are from Noble et al. (2005). 
bThe results are calculated by use of Nobel’s method. 

The high prediction accuracies (Figure 1) from IDQD indicate that our method is 
applicable to other cell lines for DHSs annotation. It also illuminates that the k-mer 
(k = 3, 4, …, 7) frequency distributions are important feature parameters for classifying 
DHS and non-DHS sequences. In literature (Noble et al., 2005), k-mers with k = 2 to 6 
were taken into account. But, following our experience, the 7-mer frequency is an 
important factor for the correct prediction of DHSs. The heptamer may reflect the main 
range of most deoxyribonuclease interactions. The IDQD method with k-mer frequencies 
as the input is easily manipulated and can be used in large-scale genome DHSs 
annotation. 
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Figure 1 The ROC curves for DHSs recognition in different cell lines 

 

4 Discussion 

On the basis of the different characteristics between DHS and non-DHS sequences,  
the IDQD method was successfully applied to the recognition of DHSs for four cell lines: 
K562, CD4+

 T, Hela and GM06990. These results indicate that IDQD, complementary to 
other existing methods, is a promising approach in future genome-wide DHSs annotation. 

The ID defined in this paper is essentially a measure of entropy increase as a sample 
merged to a standard source. As the size of standard source is large enough,  
the influences of fluctuation can be negligible and the diversity of standard source will 
include accurate information about the frequency distribution of selected characters. 
Synthetically using several IDs by quadratic discriminant analysis, we are able  
to evaluate the detailed difference between any potential sample and the standard source. 

The efficient extraction of sequence information by use of diversity measure in  
high-dimensional space and the synthesis of different types of sequence information into 
one discriminant function are two important factors for the success of IDQD algorithm. 
The different IDs are integrated into one non-linear discriminant function ξ through 
quadratic discriminant analysis. The only adjustable parameter existed in IDQD 
algorithm is the threshold of ξ, namely ξ0. So, the algorithm is easily evaluated.  
The parameter should be empirically determined in principle to obtain optimal 
evaluation. However, in ROC analysis, the threshold ξ0 can be looked exactly as a 
variable to plotting curves for performance evaluation. 

Because DHSs are important genetic markers of cis-regulatory sequences,  
the application of the IDQD method for DHSs recognition will be helpful in the 
delineation of the functional elements in the human genome. 

Acknowledgements 

We are grateful to Prof. Guojun Li for his careful reviews and valuable comments on  
our manuscript. We thank Dr. Jun Lu for his useful discussions. This work was supported 
by National Natural Science Foundation of China, No. 90403010 and No. 10447003. 



   

 

   

   
 

   

   

 

   

   384 W. Chen et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

References 
Akobeng, A.K. (2007) ‘Understanding diagnostic tests 3: receiver operating characteristic curves’, 

Acta Paediatr., Vol. 96, pp.644–647. 
Crawford, G.E., Holt, I.E., Whittle, J., Webb, B.D., Tai, D., Davis, S., Margulies, E.H., Chen, Y.D., 

Bernat, J.A., Ginsburg, D., Zhou, D.X., Luo, S.J., Vasicek, T.J., Daly, M.J., Wolfsberg, T.G. 
and Collins, F.S. (2006) ‘Genome-wide mapping of DNase Hypersensitive sites using 
Massively Parallel Signature Sequencing (MPSS)’, Genome Res., Vol. 16, pp.123–131. 

Dorschner, M.O., Hawrylycz, M., Humbert, R., Wallace, J.C., Shafer, A., Kawamoto, J.,  
Mack, J., Hall, R., Goldy1, J., Sabo, P.J., Kohli, A., Li, Q.L., McArthur, M. and 
Stamatoyannopoulos, J.A. (2004) ‘High-throughput localization of functional elements by 
quantitative chromatin profiling’, Nat. Methods., Vol. 1, pp.219–225. 

Felsenfeld, G. (1992) ‘Chromatin as an essential part of the transcriptional mechanism’, Nature, 
Vol. 355, pp.219–224. 

Felsenfeld, G. and Groudine, M. (2003) ‘Controlling the double helix’, Nature, Vol. 421,  
pp.448–453. 

Gross, D.S. and Garrard, W.T. (1988) ‘Nuclease hypersensitive sites in chromatin’, Annu. Rev. 
Biochem., Vol. 57, pp.159–197. 

Laxton, R.R. (1978) ‘The measure of diversity’, J. Theor. Biol., Vol. 70, pp.51–67. 
Li, Q.L., Peterson, K.R., Fang, X.D. and Stamatoyannopoulos, G. (2002) ‘Locus control regions’, 

Blood, Vol. 100, pp.3077–3086. 
Li, Q.Z. and Lu, Z.Q. (2001) ‘The prediction of the structural class of protein: application of the 

measure of diversity’, J. Theor. Biol., Vol. 213, pp.493–502. 
Lin, H. and Li, Q.Z. (2007) ‘Predicting conotoxin superfamily and family by using pseudo amino 

acid composition and modified Mahalanobis discriminant’, Biochem. Biophys. Res. Commun., 
Vol. 354, pp.548–551. 

Lowrey, C.H., Bodine, D.M. and Nienhuis, A.W. (1992) ‘Mechanism of DNase I Hypersensitive 
Site formation within the human globin locus control region’, Proc. Natl. Acad. Sci., USA, 
Vol. 89, pp.1143–1147. 

Lu, J. and Luo, L.F. (2007) ‘Predicting human transcription starts by use of diversity measure with 
quadratic discriminant’, AIP Conf. Proc., Greece, Vol. 963, pp.1273–1277. 

Luo, L.F. and Lu, J. (2007) ‘Sequence pattern recognition in genome analysis’, AIP Conf. Proc., 
Greece, Vol. 963, pp.1278–1281. 

Noble, W.S., Kuehn, S., Thurman, R.Y.M. and Stamatoyannopoulos, J.A. (2005) ‘Predicting the  
in vivo signature of human gene regulatory Sequences’, Bioinformatics, Vol. 21,  
pp.i338–i343. 

Sabo, P.J., Humbert, R., Hawrylycz, M., Wallace, J.C., Dorschner, M.O., McArthur, M. and 
Stamatoyannopoulos, J.A. (2004) ‘Genome-wide identification of DNase1 hypersensitive  
sites using active chromatin sequence libraries’, Proc. Natl. Acad. Sci., USA, Vol. 101,  
pp.4537–4542. 

Zhang, L.R. and Luo, L.F. (2003) ‘Splice site prediction with quadratic discriminant analysis using 
diversity measure’, Nucleic Acids Res., Vol. 31, pp.6214–6220. 




