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The thermostability of proteins is particularly relevant for enzyme engineering. Developing a computational
method to identify mesophilic proteins would be helpful for protein engineering and design. In this work, we
developed support vector machine based method to predict thermophilic proteins using the information of
amino acid distribution and selected amino acid pairs. A reliable benchmark dataset including 915
thermophilic proteins and 793 non-thermophilic proteins was constructed for training and testing the
proposed models. Results showed that 93.8% thermophilic proteins and 92.7% non-thermophilic proteins
could be correctly predicted by using jackknife cross-validation. High predictive successful rate exhibits that
this model can be applied for designing stable proteins.
+86 28 83208238.
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1. Introduction

Protein thermostability is an important aspect of protein bio-
chemical and biotechnological research (Bommarius et al., 2006).
Commonly, for chemical reactions, high temperature could increase
reaction activity and decrease reaction time. However, many proteins
are unstable under the condition of high temperature. In this sense, it
is urgent and important to develop a validated method that can
predict the stability of a given protein from its primary sequence.
Currently, several researches have focused on the study of thermo-
philic properties of protein (Ding et al., 2004; Liang et al., 2005; Zhang
and Fang, 2006a,b,c; Chen et al., 2007; Zhou et al., 2008; Gromiha and
Suresh, 2008; Wu et al., 2009; Taylor and Vaisman, 2010). Results
have shown that amino acid composition, dipeptide composition,
number of ion pairs and salt bridges of proteins are correlated to their
thermostability (Fukuchi and Nishikawa, 2001; Dominy et al., 2004;
Ibrahim and Pattabhi, 2004; Sadeghi et al., 2006). It has also been
confirmed that some single point mutations could influence the
thermostability of proteins (Capriotti et al., 2005; Montanucci et al.,
2008; Huang and Gromiha, 2009). For example, Ile, Arg, Glu, Lys and
Pro residue content were found to be higher, while Ser, Asn, Gln, Thr
and Met were lower in thermophilic proteins when compared with
mesophilic ones (Zhang and Fang, 2006a; Gromiha and Suresh, 2008).
In addition, Gromiha et al. (1999) showed that the Gibbs free energy
of hydration and shape were also coupled with the stability of
thermophilic proteins. Zhang and Fang (2006a,b) found that the
occurrences of some dipeptides were significantly different between
thermophilic proteins and mesophilic proteins.
Based on properties of protein sequences, thermophilic proteins can
be predicted. Liang et al. (2005) used amino acid coupling patterns to
distinguish between thermophilic proteins and their mesophilic
orthologs. Zhang and Fang (2006a,b, 2007) employed dipeptide
composition and amino acid composition for discriminating between
mesophilic proteins and thermophilic proteins. The five-fold cross-
validated accuracy achieved 86.6%. Subsequently, Gromiha and Suresh
(2008) removed the redundancy of Zhang and Fang's dataset. The
overall accuracy of five-fold cross-validation increased to 89% using
amino acid composition based on neural network. Montanucci et al.
(2008) used support vector machine (SVM) to predict protein
thermostability. The accuracy is 88% by using jackknife cross-validation.
Recently, Wu et al. (2009) proposed a decision tree to predict protein
thermostability. The accuracies of N80% were achieved. Although these
works obtain good results, the accuracy is also required to improve.

In this work, we constructed a reliable benchmark dataset
containing 915 thermophilic proteins and 793 non-thermophilic
proteins. The SVM combined with amino acid composition and
dipeptide composition was used to discriminate between thermo-
philic and non-thermophilic proteins. The feature selection technique
was used to improve predictive accuracy. As a result, the jackknife
cross-validated accuracy of 93.3% is achieved by use of 30 optimal
parameters. Furthermore, the influence of parameters on predictive
performance was discussed.

2. Materials and methods

2.1. Datasets

The foundation in developing an accurate model is to construct a
reliable benchmark dataset. In present research, thermophilic
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proteins and non-thermophilic proteins are extracted from thermo-
philic organisms and non-thermophilic organisms, respectively. In
order to guarantee the non-thermophilic proteins to be denaturation
when temperature rises to the temperature of thermophilic organ-
isms, we used 60 °C and 30 °C as the lower limit of optimal growth
temperature for thermophilic organisms and the upper limit of
optimal growth temperature for non-thermophilic organisms, re-
spectively. By examining the optimal growth temperatures of 1126
complete microbial genomes in National Center for Biotechnology
Information (NCBI), 136 prokaryotic genomes (17 archaea and 119
bacteria) meet the requirement (shown in Table S1).

The protein sequences of 136 prokaryotic organisms were
extracted from the Universal Protein Resource (UniProt). The
following steps were used to guarantee the reliable of protein data.

(1) The proteins must be manually annotated and reviewed.
(2) The protein sequences containing ambiguous residues (such as

“X”, “B” and “Z”) were excluded.
(3) The sequences which are fragment of other proteins were

excluded.
(4) The proteins which infer from prediction or homology were

excluded because of lacking confidence.

After strictly following the above procedures, 1329 thermophilic
proteins and 1250 non-thermophilic proteins were obtained. A list of
organisms, optimal growth temperatures, number of proteins and
domain of life were recorded in Table S1. To get rid of redundancy and
homology bias, the CD-HIT program (Huang et al., 2010) was utilized
to remove the highly similar sequences using 40% sequence identity
as the cutoff. The final data set comprises 915 thermophilic proteins
and 793 non-thermophilic proteins which can be downloaded from
our web site.

2.2. Parameter selection

One of the most important parts in prediction is to generate a set
of informative parameters. The amino acid composition (AAC) and
dipeptide composition are accepted parameters which have been
widely applied in the area of protein prediction (Zhang and Fang,
2006a,b; Montanucci et al., 2008; Gromiha and Suresh, 2008; Wu et
al., 2009). Here, we extended dipeptide composition to g-gap
dipeptide composition (Lin, 2008). Therefore, our parameters reflect
not only the difference on composition and sequence order between
two types of proteins, but also on residue correlation. The AAC and g-
gap dipeptide composition for each sequence can be defined as:

f20 ið Þ = x20 ið Þ
∑
i
x20 ið Þ ð1Þ

f g400 jð Þ = yg
400 jð Þ

∑
j
yg
400 jð Þ ð2Þ

here x20(i) and y400
g (j) denote the number of residues of types i and

the number of g-gap dipeptide of types j in a protein sequence,
respectively.

Many works have found that some of the parameters may be
redundant to each other which can reduce the predictive accuracies.
Thus it is necessary to use feature selection techniques to remove
redundant parameters. At present, principal component analysis,
genetic algorithm and minimal-redundancy-maximal-relevance were
proposed for feature selection (Yuan et al., 2009; Wang and Yang,
2009). Other selection procedures were done according to forward or
backward selection (Park et al., 2005; Lin et al., 2009a; Yuan et al.,
2009). However, forward or backward selection is time-consuming.
Hence we proposed analysis of variance (ANOVA) technique to per-
form feature selection.

2.3. Support vector machine

The freely available package LibSVM (Chang and Lin, 2001) was
used to implement SVM. Four kinds of kernel functions (linear,
polynomial, sigmoid and radial basis function) can be chosen to obtain
the best classification hyperplane. Here, we used radial basis function
to perform the classification. The regularization parameter C and
kernel parameter γ must be determined in advance. The Libsvm
package offers grid search program to optimize parameters C and γ.
For economizing time of calculation, we performed grid search on
parameters C and γ using 5-fold cross-validation.

2.4. Performance evaluate

The jackknife cross-validation (Chou and Zhang, 1995; Chou and
Shen, 2007; Lin et al., 2009a,b) was used to examine the power of the
proposed method. The performance can be measured in term of
sensitivity (Sn), specificity (Sp) and accuracy. These parameters can be
defined by following equations:

Sn = TP = TP + FNð Þ ð3Þ

Sp = TN = TN + FPð Þ ð4Þ

Accuracy = TP + TNð Þ= TP + TN + FP + FNð Þ ð5Þ

here TP, TN, FP and FN represent the number of the correctly
recognized thermophilic proteins, the number of the correctly
recognized non-thermophilic proteins, the number of non-thermo-
philic proteins recognized as thermophilic proteins and the number
of thermophilic proteins recognized as non-thermophilic proteins,
respectively.

3. Results and discussion

3.1. Discrimination of thermophilic and non-thermophilic proteins

The jackknife cross-validated accuracies of residue composition
and g-gap dipeptide compositionwere recorded in Table S2.We found
that both residue and g-gap dipeptide compositions discriminated
thermophilic from non-thermophilic proteins with the accuracy in the
range of 89–93%. The accuracy by using residue composition is higher
than that of g-gap dipeptide composition in spite of the fact that
dipeptides contain more parameters. This indicates that some
redundant information exists in dipeptide composition. For the
analysis of contribution of 20 amino acids, accuracy of each amino
acid was calculated and shown in Fig. 1. From this figure, we could
deduce that the residue compositions of Glu, Lys, Gln, Ala, ILe are
dramatically different between thermophilic and non-thermophilic
proteins. In fact, statistics shows that thermophiles have high content
of Glu, Lys. These charged residues are easily to form hydrogen bonds
or salt bridges which contribute to protein thermostability. It also
implies that the thermal denaturation occurs easily for Ala, Gln rich
proteins with less charged residues. According to the above analysis,
we used these peculiar resides Glu, Lys, Gln, Ala, Ile as parameters to
train and test SVM. Jackknife cross-validated results show that the
accuracy of peculiar resides is 88.65% which is lower than 92.56% of
full amino acid composition. Thus, we used 20 amino acid composi-
tions as initial parameter subset in the following prediction.

Former researches (Zhang and Fang, 2006a,b; Montanucci et al.,
2008) have found that residue pairs contain important information for
the prediction of thermophilic proteins. However, information
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Fig. 1. The accuracies of 20 amino acids.
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redundancy in dipeptide set may reduce the cluster-tolerant capacity
so as to lower down the predictive accuracy.

ANOVA technique can be used to select informative g-gap
dipeptides. It initially evaluates each g-gap dipeptide and selects the
onewith themaximumdifference between two types of proteins. This
selected g-gap dipeptide then combines with 20 amino acids as new
parameter subset to predict thermophilic proteins. Subsequently, the
g-gap dipeptide with the second maximum difference is selected out
and merged into the parameter subset. We repeated this process until
increasing the size of the current parameter subset leads to a lower
prediction rate. By examining a great number of parameters, we found
that an optimized feature set including 30 parameters achieves the
highest predictive accuracy. Table 1 shows that the overall accuracy
improves from 92.56% to 93.27%. The informative g-gap dipeptides are
EE, KE, EI, I*K, I*E, E**K, E**E, K**E, Q**A, E***K (here * denotes gap
of residues). Residues E, K, I play important roles in enhancing
thermostability of proteins. These results are consistent with former
results (Ding et al., 2004; Dominy et al., 2004; Zhang and Fang, 2006a,b;
Gromiha and Suresh, 2008).

3.2. Comparison with other methods

It is important to compare our method with other machine
learning method using the same benchmark dataset. WEKA (Waikato
environment for knowledge analysis) (Witten and Frank, 2005)
program including several machine learning techniques such as Bayes
Net, Naïve Bayes, Random Forest was used to execute comparisons.
Results are recorded in Table 1. Obviously, SVM can achieve the
highest predictive successful rate.
Table 1
Results for the prediction of thermophilic proteins and non-thermophilic proteins.

Methods Sn (%) Sp (%) Accuracy (%)

SVM 93.77 92.69 93.27
Bayes Net 84.92 88.78 86.71
Naïve Bayes 81.75 90.04 85.60
Random Forest 91.37 88.65 90.11
Decision tree J4.8 83.65 81.83 82.33
Bagging meta learning 88.85 87.77 88.35
Logistic function 90.93 90.92 90.93
RBF network 87.98 89.41 88.64
Classification via Regression 88.31 85.88 87.18
NBTree 86.01 82.35 84.31
Recently, Gromiha and Suresh (2008) have predicted a non-
redundant dataset including 1609 thermophilic proteins and 3075
mesophilic proteins. The sensitivity, specificity and accuracy of 5-fold
cross-validation are 82.4%, 93.0% and 89.4%, respectively. We used this
dataset to train and test our model. The sensitivity, specificity and
accuracy of 5-fold cross-validation achieved 85.4%, 93.6% and 90.8%,
respectively. The accuracy is comparable or superior to that reported
by Gromiha and his colleague (Gromiha and Suresh, 2008).

4. Conclusion

We have systematically analyzed the predictive performance of
each amino acid for thermophilic and non-thermophilic proteins.
By use of ANOVA, ten specific dipeptides (EE, KE, EI, I*K, I*E, E**K, E**E,
K**E, Q**A, E***K) were mined to improve performance of SVM. The
jackknife cross-validated accuracy is 93.27% which demonstrates that
this method can be used to discriminate between thermophilic and
non-thermophilic proteins. The predictor based on the proposed
model can be freely downloaded from http://cobi.uestc.edu.cn/
people/hlin/tools/ThermoPred/.
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