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Mycobacterium can cause many serious diseases, such as tuberculosis and leprosy. Its
membrane proteins play a critical role for multidrug-resistance and its tenacious survival
ability. Knowing the types of membrane proteins will provide novel insights into un-
derstanding their functions and facilitate drug target discovery. In this study, a novel
method was developed for predicting mycobacterial membrane protein and their types by
using over-represented tripeptides. A total of 295 non-membrane proteins and 274 mem-
brane proteins were collected to evaluate the performance of proposed method. The results
of jackknife cross-validation test show that our method achieves an overall accuracy of
93.0% in discriminating between mycobacterial membrane proteins and mycobacterial
non-membrane proteins and an overall accuracy of 93.1% in classifying mycobacterial
membrane protein types. By comparing with other methods, the proposed method showed
excellent predictive performance. Based on the proposed method, we built a predictor, called
MycoMemSVM, which is freely available at http://lin.uestc.edu.cn/server/MycoMemSVM. It is
anticipated that MycoMemSVMwill become a useful tool for the annotation of mycobacterial
membrane proteins and the development of anti-mycobacterium drug design.
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1. Introduction

Mycobacterium is a genus of Actinobacteria and is notoriously
known for its pathogenicity. Mycobacterium can cause serious
diseases such as tuberculosis (TB) and leprosy, which result in
millions of cases of infection and deaths every year. Although
scientists have made great efforts to develop bacterin and
drugs for the treatment of these diseases, the appearance of
multidrug-resistant of TB makes some drugs lost their luster
and brings a great challenge to drug design. Mycobacteria
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possess an especially complex cell envelope that consists of a
cell wall and a cytoplasmic membrane, which plays a critical
role for its multidrug-resistance and tenacious survival ability
under harsh conditions [1–3]. Membrane proteins are the most
important part of cell membrane. These membrane proteins
exert their many crucial physiological and biological functions,
including as carrier to transport materials into or out of cells
and as receptors of some hormone or chemical substance. In
particular, membrane proteins are important drug targets [2–4].
Therefore, accurately identifying the types of mycobacterial
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membrane proteins will be helpful for the analysis of the
functions of mycobacterial proteins and the development of
antimicrobial drugs [5].

It ishighly reliable to use experimentalmethods to recognize
the types of membrane proteins. However, because most of
membrane proteins are difficult to crystallize and dissolve in
majority solvents, we can not get their structure by crystal
diffraction or nuclear magnetic resonance (NMR) spectroscopy
[6]. Furthermore, it is also both costly and time-consuming for
experimental approaches to identifymembrane proteins. Thus,
it is necessary to develop effective computational methods to
predict mycobacterial membrane proteins and their types.

In the past decade, many computational methods have been
proposed to predict membrane proteins according to their
sequence information [7–14]. The statistical-based prediction
models contain twopivotal procedures.One is the representation
of protein sequences. The information-richdescriptionof protein
is a key step in building precise and robust model. Researchers
have presented various feature extraction strategies, such as
amino acid composition (AAC) [15], pseudo amino acid compo-
sition (PseAAC) [13,16–19], functional domain composition [8],
supervised locally linear embedding (SLLE) [20], evolution in-
formation [12,21,22], split amino acid composition (SAAC) [6,17,
21,23], wavelet analysis [24] and so on. The other is the clas-
sification algorithm. A prominent algorithm is also requisite for
constructing a wonderful model. Up to now, many algorithms
such as support vector machine (SVM) [25,26], artificial neural
networks (ANN) [24,27], K-nearest neighbor (KNN) [10,28,29],
hidden Markov model (HMM) [30], ensemble classification [6,11]
and Mahalanobis discriminant algorithm [16,31] have been
applied in protein structure and function prediction. The success
of these predictors implied that the machine learning method
can be used for the prediction of mycobacterial membrane
proteins and their types. However, few works have focused on
the prediction of membrane protein in mycobacterium. Yeh and
Mao [32] have used SVM with N-terminal sequence patterns to
distinguish betweenmembrane proteins and soluble proteins in
Mycobacterium tuberculosis. Pajón et al. [33] have developed a
predictor, called PROB, to identify beta-barrel outer membrane
proteins of M. tuberculosis and employed it to predict 79 new
proteins which were not annotated by experiment. Song et al.
[34] have analyzed outer membrane proteins of M. tuberculosis
and found two function-undefined outer membrane proteins.
Results of theseworks arepretty, butnoneof thempaid attention
to the prediction of mycobacterial membrane proteins types.
Recently, Fan and Li [35] presented a PseAAC-based method to
predict three types of mycobacterial membrane proteins. The
overall accuracy of 85.0%with the average accuracy of 63.4%was
achieved in jackknife cross-validation. However, this accuracy is
far from satisfactory. Thus, it is urgent to construct accurate
model to predict mycobacterial membrane proteins and their
types.

In view of this, the present study was attempted to develop
an effective method for predicting mycobacterial membrane
proteins and their types. The binomial distribution was used to
pick out the over-represented tripeptides. The SVM was used
to perform prediction. In the jackknife cross-validation, our
method achieved an overall accuracy of 93.0% for the prediction
of mycobacterial membrane proteins and an overall accuracy
of 93.1% for the identification of the types of mycobacterial
membrane proteins. To further demonstrate its advantages, we
also compared the performance of the proposed method with
other methods.
2. Materials and methods

2.1. Dataset

The data of mycobacterial proteins used in this paper were
extracted from Universal Protein Resource (UniProt) database
[36]. In order to obtain high quality and well defined dataset,
we selected protein sequences which strictly following the
procedures below: first, we chose sequences which were
reviewed and manually annotated by experts; second, we
excluded the proteins whose type is undefined or ambiguous;
third, we eliminated the sequences whose protein existence is
uncertain or predicted; fourth, we dislodged the sequences
which are fragments of other proteins; finally, the sequence
redundancy was reduced to 90%. After the above screening
procedures, we obtained a dataset containing 2439 mycobac-
terial non-membrane proteins and 1645 mycobacterial mem-
brane proteins. In order to objectively validate the method
and compare its predictive performance with existing algo-
rithms, the 1645 mycobacterial membrane proteins were
randomly divided into a training dataset (including 1039
membrane proteins) and an independent dataset (including
606 membrane proteins).

It is well known that protein dataset with high similarity
always contains redundancy, which can overestimate the
performance and reduce the generalization ability of a proposed
model. To get non-redundant data, the CD-HIT [37] program
was utilized to remove the redundant sequences using 40%
sequence identity as the cutoff. As a result, we obtained 295
non-membrane proteins. The training set of membrane pro-
teins contains 274 sequences, of which 32 are single-pass
membrane proteins, 192 are multi-pass membrane proteins,
20 are lipid-anchor membrane proteins, and 30 are peripheral
membrane proteins. The independent set of membrane pro-
teins contains 125 membrane protein sequences, of which 18
are single-pass membrane proteins, 75 are multi-pass mem-
brane proteins, 8 are lipid-anchor membrane proteins, and 24
are peripheral membrane proteins. These data can be freely
downloaded from our web site http://lin.uestc.edu.cn/server/
MycoMemSVM.

2.2. Tripeptide compositions

It is one of the most important parts for pattern recognition to
extract a set of informative parameters. The tripeptides play
important roles in biology. Three contiguous amino acids
constitute a useful and minimal biological recognition signal.
This may form a useful paradigm for discovering peptides and
small organic molecule mimics that are useful modulators of
biological function [38]. Anishetty et al. [39] have also showed
that the tripeptide may be used to predict plausible structures
for oligopeptides as well as denovo protein design. Therefore,
in this work, tripeptide compositions were utilized to represent
the sample of membrane proteins. By scanning one sequence
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using a sliding window of three residues with one step, we
calculated the frequency of each tripeptide appeared in the
protein sequence according to the following equation:

f i ¼ ni=∑8000
i¼1 ni ¼ ni= L−2ð Þ ð1Þ

where ni and L denote the number of the i-th tripeptide and the
length of the protein sequence, respectively.

Then the protein can be described by an 8000 dimensional
vector as follows:

F8000 ¼ f 1; f 2; ⋅⋅⋅; f i; ⋅⋅⋅; f 8000½ �T ð2Þ

where symbol T denotes the transposition of vector and fi is
the frequency of the i-th tripeptide.

2.3. Feature selection

Theoretically, if all 8000 tripeptides are selected as the feature
of membrane proteins, there will be three problems: one is
over-fitting which results in low generalization ability of
prediction model; another is information redundancy or
noise which results in bad prediction accuracy; the other is
dimension disaster which results in a handicap for the
computation. Using feature selection techniques to optimize
feature set can not only economize the time for computation,
but also build robust prediction model [40]. Many techniques
such as principal component analysis (PCA) [41,42], diffusion
Maps [43], minimal-redundancy-maximal-relevance (mRMR)
[29,44], analysis of variance (ANOVA) [45,46], local linear
discriminant analysis (LLDA) [47] and geometry preserving
projections (GPP) [22] have been proposed and used in se-
quence analysis and prediction.

In this study, the binomial distribution was proposed to
optimize tripeptides [48] for eliminating the redundant features
and improving the efficiency and performance of prediction.
Due to 8000 kinds of tripeptides may occur in benchmark
dataset, and each kind of tripeptide occurring in one class may
be a stochastic event, we must judge whether each kind of
tripeptide occurring in one class is a stochastic event or not.

Suppose the total occurrence frequency of all tripeptides in
the dataset is M, the probability of tripeptides occurred in
class i is denoted as pi and calculated as:

pi ¼ mi=M ð3Þ

where the mi is the number of tripeptides that appear in the
class i.

Let Nj represent the total occurrence number of a given
tripeptide j in dataset, the probability of tripeptide j randomly
occurring nij or more times in the class i can be defined by:

P nij
� � ¼

XNj

m¼nij

Nj!

m! Nj−m
� �

!
pmi 1−pið ÞNj−m: ð4Þ

If P(nij) is a small value, it means the tripeptide j appearing
in class i should not be random. The confidence level of this
case is defined by CLij:

CLij ¼ 1−P nij
� �

: ð5Þ
If there are k tripeptides whose CLij is larger than a given
cutoff CL0, the frequencies of these tripeptides are selected as
optimized features that can be described as:

Fk ¼ f 1; f 2; ⋅⋅⋅; f i; ⋅⋅⋅; f k½ �T ð6Þ

Based on confidence (Eq. (5)), high-dimensional feature
parameters can be projected into low-dimensional space. The
parameter k or CL0 can be chosen by the use of five-fold
cross-validation.

2.4. Support vector machine

Support vector machine (SVM) is a machine learning algo-
rithm based on statistical learning theory. It has been widely
used in the field of protein structure and functional pre-
dictions [49–53]. The basic idea of SVM is to transform the data
into a high dimensional feature space, and then determine
the optimal separating hyperplane. For handling a multi-class
problem, “one-versus-one (OVO)” and “one-versus-rest (OVR)”
are generally applied to extend the traditional SVM. In this
study, OVO strategywas employed. Usually, four kinds of kernel
functions, i.e. linear function, polynomial function, sigmoid
function and radial basis function (RBF), can be available to
perform prediction. Empirical studies have demonstrated that
the RBF outperforms the other three kinds of kernel functions.
Hence, in this work we used the RBF to perform prediction. The
grid search method is applied to tune the regularization pa-
rameter C and the kernel width parameter γ by using five-fold
cross-validation. The software toolbox used to implement SVM
is LibSVM written by Lin's lab and can be freely downloaded
from http://www.csie.ntu.edu.tw/~cjlin/libsvm [54].

2.5. Performance assessment

In order to assess the capability of the prediction method, the
sensitivity (Sn), specificity (Sp), overall accuracy (OA), and average
accuracy (AA) were used in this study. These measures are
defined as follows:

Sni ¼ TPi= TPi þ FNið Þ ð7Þ

Spi ¼ TNi= TNi þ FPið Þ ð8Þ

OA ¼ ∑μ
i¼1TPi=N ð9Þ

AA ¼ ∑μ
i¼1Sni=μ ð10Þ

where TPi and FNi represent the number of true positives and
false negatives, while FPi and TNi represent false positives and
true negatives for class i. μ is the number of protein classes. N is
the total number of sequences in benchmark dataset.
3. Results and discussion

3.1. Prediction performance

In statistical prediction, various methods such as n-fold
cross-validation test, sub-sampling test, independent dataset
test and jackknife cross-validation test have been adopted to

http://www.csie.ntu.edu.tw/~cjlin/libsvm


Table 1 – The results for predicting mycobacterial
membrane proteins.

Method Sn (%) OA (%) AA (%)

Mem Non-mem

SVM (1884 tripeptides) 89.8 95.9 93.0 92.9
Naïve Bayes
(1243 tripeptides)

88.3 93.9 91.2 91.1

RBF Network
(895 tripeptides)

86.5 91.9 89.3 89.2

Random forest
(1443 tripeptides)

81.8 75.3 78.4 78.5

J48 tree (841 tripeptides) 71.2 66.4 68.7 68.8
SVM (PseAAC) 82.8 91.9 87.5 87.4
SVM (amino acids) 79.6 88.8 84.4 84.2
SVM (dipeptide) 74.8 91.9 83.7 83.3

324 J O U R N A L O F P R O T E O M I C S 7 7 ( 2 0 1 2 ) 3 2 1 – 3 2 8
evaluate the performance of a prediction model. Because the
jackknife test can achieve unique outcome [55], in this study,
the jackknife cross-validation was used to investigate the
performance of the prediction model. In the jackknife test,
each protein sequence is in turn singled out as an indepen-
dent test sample and all the rule parameters are calculated
based on the remaining samples.

As described in feature selection section, each membrane
protein sequence was translated into a set of over-represented
tripeptides. If we select a high CL0, the results are robust and
credible. The selected tripeptides are also informative. Howev-
er, they are not the optimized features for prediction because
the number of these tripeptides is too small to reflect enough
information ofmembrane proteins. They can only describe part
ofmembrane protein properties. For example, by using >99.99%
as the confidence level, we obtained 31 tripeptides, but the
overall accuracy was only 78.8% for predicting four types of
membrane proteins. On the contrary, feature sets with low
confidence level contain somany components that the cluster-
tolerant capacity of the prediction model reduces so as to
lower down the cross-validation accuracy. For instance, 4173
tripeptides with >50% confidence level produced the overall
accuracy of 70.8% for predicting four types of membrane
proteins. Therefore, it is a key step to choose an appropriate
confidence level or the number of features for a robust and high
accuracy model.

At first, we used our method to discriminate mycobacterial
membrane proteins from non-membrane proteins. By adding
the tripeptides one by one according to the CLs calculated by
Eq. (5), we built a set of individual predictors for these
sub-feature sets using SVM. We then examined the predictive
performance for each of these predictors using five-fold
cross-validation and plotted the 3-dimension (3-D) curve for
CL, feature dimension and overall accuracy in Fig. 1. We found
that the overall accuracy reached its maximum 93.0% when
the CL0 was selected as 90.81%. The sub-feature set contains
1884 tripeptides. The jackknife cross-validated results were
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Fig. 1 – The 3-D graph for discriminating mycobacterial
membrane proteins from non-membrane proteins.
listed in Table 1. As it can be seen from Table 1, our method
can correctly identify 89.8% (246/274) mycobacterial membrane
proteins and 95.9% (283/295) non-membrane proteins. These
results indicate that the proposed method is indeed very
powerful in identifying mycobacterial membrane proteins.

Subsequently, the proposed method was used to predict
the types of mycobacterial membrane proteins. We repeated
the feature selection process for finding the optimized sub-
feature set. By plotting the 3-D curve for CL, feature dimension
andoverall accuracy in Fig. 2,we found that the overall accuracy
reached its maximum 93.1% when the CL0 was selected as
99.29%. The sub-feature set contains 261 tripeptides. The results
were recorded in Table 2. It shows that 75% (24/32) single-pass,
99.5% (191/192) multi-pass, 80% (16/20) lipid-anchor, and 80%
(24/30) peripheral membrane proteins can be correctly predict-
ed by our method. Such high accuracies demonstrate that the
proposed method is an effective and powerful approach for
predicting the types of mycobacterial membrane proteins.
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Fig. 2 – The 3-D graph for predicting the types ofmycobacterial
membrane proteins.



Table 2 – The results for predicting four types of
mycobacterial membrane proteins on training set.

Method Sn (%) OA
(%)

AA
(%)

Single Multi Lipid Peripheral

SVM
(261
tripeptides)

75.0 99.5 80.0 80.0 93.1 83.6

Naïve Bayes
(278
tripeptides)

53.1 95.3 90.0 46.7 84.7 71.3

RBF Network
(265
tripeptides)

34.4 97.9 35.0 46.7 80.3 53.5

Random
forest
(283
tripeptides)

9.3 99.5 30.0 23.3 75.5 40.5

J48 tree
(280
tripeptides)

37.5 83.3 50.0 16.7 68.2 46.9

SVM
(PseAAC)

56.3 93.2 70.0 70.0 84.7 72.4

SVM
(amino acids)

37.5 96.4 70.0 40.0 81.4 61.0

SVM
(dipeptides)

34.3 95.8 45.0 36.7 78.5 53.0
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3.2. Comparing with other methods

For testifying the superiority of our model, it is necessary to
compare the capability of predictionmodels with that of other
methods. Here, we performed many comparisons, including
using different kinds of parameters such as optimized tripep-
tides, amino acid composition (AAC), dipeptide composition and
pseudo amino acid composition (PseAAC) as well as using dif-
ferent kinds of algorithms such as J48 tree, Random forest, RBF
Network, and Naïve Bayes. It should be mentioned that when
using optimized tripeptides as inputs of these algorithms, we
repeated the process of feature selection for obtaining the best
feature sets. All jackknife test results were recorded in Tables 1
and 2. We noticed that the proposedmethod is superior to other
methods, suggesting our proposed method is an effective meth-
od. Because the types of membrane proteins closely correlate
with the biological function of membrane proteins, we did more
experiments on the data of mycobacterial membrane protein as
follows to compare the performance of the optimized tripeptides
with other parameters.
Table 3 – Comparison with PSSM and hybridizing parameters o

Method

Single M

SVM (optimized tripeptides) 75.0
SVM (optimized tetrapeptides) 84.4
SVM (optimized dipeptides) 18.8
SVM (PSSM) 25.0
SVM (amino acids+dipeptide) 37.5
SVM (optimized dipeptide+optimized tripeptides) 68.8
A whole set of tripeptide contains 8000 components which
accommodate enough information for classification. For
tetrapeptide, there are 160,000 kinds. If using feature selection
to optimize tetrapeptides, it is possible to achieve higher
accuracy. To examine this hypothesis, binominal distribution
was used again to filter tetrapeptides. For predicting four
types of mycobacterial membrane proteins, results in Table 3
show that the maximum overall accuracy of 93.4% was
achieved with an average accuracy of 83.6% by using 3256
tetrapeptides with CL>93.42%. We found that this result is
almost as high as the accuracy (OA=93.1%, AA=83.6%) of
optimized tripeptides. However, it is time-consuming for this
feature set to search optimized parameters and build model.
Moreover, the dimension of optimized tripeptide set is far less
than that of optimized tetrapeptide set. The less the param-
eters are, the more robust the model is. In addition, the CL0 of
optimized tripeptides is 99.29% which is larger than that of
optimized tetrapeptides, suggesting that the model built by
optimized tripeptides is more credible. Thus, we propose
using optimized tripeptides to perform prediction.

Position specific scoring matrix (PSSM) generated from
PSI-BLAST is usually used for representation of biological
sequences. Many works [12,21,56] have used PSSM to predict
the types ofmembraneproteins and the subcellular localization
of mycobacterial proteins. Thus we investigated the perfor-
mance of PSSM for comparison. We executed the PSI-BLAST to
generate PSSM by searching the protein dataset in GenBank.
The E-value cutoff is set to 0.002. By inputting PSSM into SVM,
we achieved the jackknife cross-validated accuracy of 81.4%
for the prediction of four types of mycobacterial membrane
proteins (Table 3). These results are not better than that of the
proposed method.

Hybridizing different parameters to represent protein se-
quence is also an important strategy for improving predictive
accuracy. By combining amino acid composition, sequence
length and physiochemical properties of amino acids, Hayat
and Khan have successfully predicted the membrane protein
types [19,21]. Motivated by their work, we also evaluated the
predictive performance of the fusion of tripeptides and dipep-
tides on our dataset. Because the dimensions between dipeptide
and tripeptide are different, they were independently filtered by
our feature reduction technique. For dipeptides, an optimized
feature set containing 42 dipeptides was obtained, which
achieves a maximum overall accuracy of 79.6% in jackknife
cross-validation, and we then evaluated the accuracy of the
fusion of optimized dipeptides and tripeptides. Results in Table 3
show that the overall accuracy is only 91.2% which is not better
n training set.

Sn (%) OA (%) AA (%)

ulti Lipid Peripheral

99.5 80.0 80.0 93.1 83.6
100.0 80.0 70.0 93.4 83.6
97.9 55.0 43.3 79.6 53.8
94.8 70.0 63.3 81.4 63.3
95.8 50.0 50.0 80.7 58.3
99.0 75.0 76.7 91.2 79.8



Table 5 – The comparison of performance on independent
dataset.

Method Sn (%) OA
(%)

AA
(%)

Single Multi Lipid Peripheral

Our method 50.0 97.3 87.5 75.0 85.6 77.5
Naïve Bayes 33.3 98.7 62.5 54.2 78.4 62.2
RBF Network 16.7 92.0 12.5 58.3 69.6 44.9
Random
forest

22.2 100 62.5 33.3 73.6 54.5

J48 tree 27.8 89.3 50.0 41.7 68.8 52.2
MemType-2L 5.6 92.0 25.0 20.8 61.6 35.8
TMHMM 72.2 93.3 90.6 89.6 85.4

Table 6 – The comparison of performance on Chou and
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than that of optimized tripeptides. Moreover, we also listed the
accuracies of the fusion of AAC and dipeptides in Table 3.
Comparison demonstrates that the optimized tripeptides can
represent the sequence features of mycobacterial membrane
proteins better than hybridizing parameters.

3.3. Comparison on three benchmark datasets

For further comparison, we tested the accuracies of ourmethod
on three different benchmark datasets. The first dataset was
constructed by Fan and Li [35]. This mycobacterial membrane
protein dataset contains 36 single-pass membrane, 248 multi-
pass membrane and 30 peripheral membrane proteins. By
executing our method on their dataset, 94.6% proteins can be
correctly predicted. The results in Table 4 show that both the
sensitivity (Sn) and specificity (Sp) of our method are higher
than those of Fan and Li's method. In particular, the overall
accuracy and average accuracy of our method are 9.6% and
19.6% higher than those of Fan and Li's method. This result
demonstrates that our method is superior to Fan and Li's
method.

The second dataset contains 125 independent membrane
proteins described in dataset section. We compared the perfor-
mance of different algorithms on this independent dataset. The
predictive models were constructed on our training set. Results
in Table 5 demonstrate again that the proposed method is
superior to other methods. Furthermore, we also used the
independent dataset to examine the performance of two on-
line tools: MemType-2L and TMHMM. The MemType-2L can
distinguish eight types of membrane proteins with the overall
accuracy of >85%. However, this server can only correctly
recognize 61.6% cases (Table 5), suggesting that our method is
more suitable to study mycobacterial membrane proteins. The
TMHMM can predict the transmembrane helices in proteins.
According to the number of predicted transmembrane helices in
a protein, we can judge this protein belonging to single-pass,
multi-pass or non-pass membrane protein. Due to its excellent
performance in the prediction of transmembrane helices, it can
accurately identify 72.2% single-pass membrane proteins which
is better than our method (Table 5). However, its recognition
capability onmulti-passmembrane proteins is a little poor than
our method (Table 5). Furthermore, TMHMM is helpless in the
discrimination between lipid-anchor and peripheral membrane
proteins. Therefore, our method has great potential in myco-
bacterial membrane protein type prediction.

All of the above analyses focused on mycobacterial mem-
brane protein. To argue the feasibility of this method on
non-mycobacterial membrane protein, we tested the method
Table 4 – Comparison of performance on Fan and Li's
dataset.

Our method Fan and Li's method

Sn (%) Sp (%) Sn (%) Sp (%)

Single 72.2 100 41.7 96.8
Multi 100 82.3 95.2 54.5
Peripheral 76.7 100 53.3 97.2
OA (%) 94.6 85.0
AA (%) 83.0 63.4
on Chou and Shen's training and independent datasets [12]. The
dataset contains eight types of membrane proteins and can be
freely downloaded from http://www.csbio.sjtu.edu.cn/bioinf/
MemType/Data.htm. As it can be seen fromTable 6, ourmethod
can achieve an overall accuracy of 80.5% on training dataset and
an overall accuracy of 86.5% on independent dataset. Some
methods did outperform our method, but the accuracies of our
method are still higher than those of Least Euclidean and
ProtLoc. Most of these methods such as MemType-2L and
GPP&KNN used the PSSM to perform predictions. The PSSM
information is very effective and powerful due to the high
sequence identity criterion (<80%) in this dataset. However, if
a dataset has low sequence identity, such as our training data
with the <40% sequence identity, the accuracy will reduce.
Moreover, the PSSM of a protein dependmuch on the searching
dataset. If no homologous is found in the searching dataset, the
PSSM will not give exact description, which results in wrong
prediction. Besides, we wanted to stress again that the accuracy
of MemType-2L on mycobacterial membrane protein is not
better than that of our method (see in Table 5), suggesting that
our method has predominance on mycobacterial membrane
protein. This result also demonstrates the feasibility of our
method on non-mycobacterial membrane proteins.
4. Conclusion

In this work, we developed a promising method to predict the
mycobacterial membrane proteins and their types. A binomial
distribution-based feature selection technique was proposed
to select over-represented tripeptides. In the jackknife test,
Shen's dataset.

Method Overall accuracy (%)

Jackknife test Independent test

Our Method 80.5 86.5
MemType-2L 85.0 91.6
Least Euclidean distance 51.7 61.4
ProtLoc 52.0 37.2
LLDA&KNN 87.2 88.7
GPP&KNN 84.0 90.2
MVP&KNN 86.1 88.4
ENS2-BORDA Non 91.0

http://www.csbio.sjtu.edu.cn/bioinf/MemType/Data.htm
http://www.csbio.sjtu.edu.cn/bioinf/MemType/Data.htm
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our proposed model achieved an overall accuracy of 93.0% for
the prediction of mycobacterial membrane proteins predic-
tion, and an overall accuracy of 93.1% for the classification of
mycobacterial membrane protein types. Based on this result,
we constructed an online server, called MycoMemSVM, for
predicting mycobacterial membrane proteins and their types,
which is freely available at http://lin.uestc.edu.cn/server/
MycoMemSVM. We believe that the server will be helpful for
the vast majority of experimental scientists who focus on
mycobacterium and antimicrobial drugs.
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