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Abstract Ketoacyl synthases are enzymes involved in

fatty acid synthesis and can be classified into five families

based on primary sequence similarity. Different families

have different catalytic mechanisms. Developing cost-

effective computational models to identify the family of

ketoacyl synthases will be helpful for enzyme engineering

and in knowing individual enzymes’ catalytic mechanisms.

In this work, a support vector machine-based method was

developed to predict ketoacyl synthase family using the

n-peptide composition of reduced amino acid alphabets. In

jackknife cross-validation, the model based on the 2-pep-

tide composition of a reduced amino acid alphabet of size

13 yielded the best overall accuracy of 96.44% with

average accuracy of 93.36%, which is superior to other

state-of-the-art methods. This result suggests that the

information provided by n-peptide compositions of reduced

amino acid alphabets provides efficient means for enzyme

family classification and that the proposed model can be

efficiently used for ketoacyl synthase family annotation.

Keywords Ketoacyl synthase family � Reduced amino

acid alphabet � Support vector machine � n-Peptide

Introduction

Enzymes are proteins that catalyze (i.e., increase or

decrease the rates of) chemical reactions. Almost all

processes in a biological cell need enzymes to occur at

significant rates. Enzymes are usually very specific as to

which reactions they catalyze and the substrates that are

involved in the reactions. Ketoacyl synthases (KSs) are key

members of the fatty acid synthesis cycle used by organ-

isms to form lipids [4]. In fatty acid synthesis, KSs con-

dense the acyl-X chain with a carboxylated acyl-X chain

[where X is either coenzyme A or acyl carrier protein

(ACP)] and add two carbon atoms to the growing fatty acid

chain by releasing a carbon dioxide and making ketoacyl-

ACPs. Based on primary sequence similarity, KSs are

divided into five families, KS1 to KS5 [4]. Knowing to

which family an enzyme belongs casts new light on its

catalytic specificity and gives clues to the relevant bio-

logical function. With the rapid increase in newly found

protein sequences, the need for an automated and accurate

tool to recognize enzyme families becomes increasingly

important.

Over the past decade, many computational methods

have been proposed for enzyme family and function pre-

diction. By using the covariant discriminate function

algorithm, Chou and Elord [10] predicted the subclasses of

oxidoreductases. In follow-up work, Chou [8] improved the

predictive accuracy to 70.6% by using amphiphilic pseudo

amino acid composition. Afterwards, several other works

were developed to predict enzyme subclasses. The GO-

PseAA predictor was employed by Chou and Cai [9] to
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predict enzyme subclasses. Later, by using functional

domain composition and pseudo amino acid composition,

Cai and Chou [2] obtained higher predictive accuracy.

Recently, Shen and Chou [43] proposed a top-down

approach for predicting enzyme functional classes,

obtaining overall success rates ranging from 86.7% to

98.3%. The functions of proteins correlate with their three-

dimensional (3D) structures. Based on the information of

the 3D structure of proteins, González-Dı́az and colleagues

developed some models and web servers to discriminate

between enzymes and nonenzymes [14, 15, 39], predict

enzyme classes [13], and recognize protein kinases [26,

27]. They also developed some quantitative structure–

activity relationship (QSAR)-based methods [16, 24, 25] to

classify polygalacturonases and nonpolygalacturonases [1],

discriminate dyneins from nondyneins [17], and predict

RNase scores [23], achieving encouraging results.

However, to the best of our knowledge, there exists no

theoretical method for KS family classification. In this

article, we propose a support vector machine (SVM)-based

method to identify KS families using reduced amino acid

alphabets (RAAA) obtained by the protein blocks method

[18, 19, 31, 47]. Compared with amino acid composition,

RAAA can extract more useful information for protein

sequences, eliminate some noise, reduce the dimension of

the feature space, and improve the prediction accuracy. The

performance of the proposed method was compared with

that of other methods. Results demonstrate that this model

could be a potentially useful tool for ketoacyl synthase

family identification.

Materials and methods

Dataset

A total of 1,304 experimentally confirmed (evidence at

transcript level or protein level) KSs were obtained from

the ThYme database [4]. Highly similar data will surely

lead to overestimation of the performance of the proposed

method. To prepare a high-quality dataset, sequences with

C60% identity were removed by using the CD-HIT pro-

gram [34]. The final dataset contained 225 proteins.

According to the database annotation, these proteins are

classified into five families: 16 KS1, 30 KS2, 80 KS3, 29

KS4, and 70 KS5. If the sequence identity cutoff is set to a

lower percentage (such as 25%), the results will be more

objective and reliable. However, in this study we did not

use such a stringent criterion because the currently avail-

able data do not allow this. Otherwise, the number of

proteins for some subsets would be too few to have sta-

tistical significance.

Frequency of reduced amino acid alphabet

Reduced amino acid alphabets (RAAA) [21] clustered

based on protein blocks [18, 19, 31] have been successfully

employed in the area of protein annotation [7, 33, 40, 41,

47]. The RAAA scheme is shown in Table 1. Compared

with the traditional amino acid composition, RAAA not

only simplifies the complexity of the protein system but

also improves the ability to find structurally conserved

regions and structural similarity of entire proteins.

In this study, protein sequences are encoded by the

frequency of n-peptide composition of RAAA of different

sizes. For each value of n, the corresponding feature vector

contains the fraction of each possible n-length substring in

the sequence. The feature vector dimension (D) of the

n-peptide composition obtained from RAAAs of different

size (S) is listed in Table 2. The case n = 1 can be con-

sidered as the first-order approximation to the complete

protein sequence. n = 2 gives the dipeptide composition,

depicting the correlation of proximate residues. As

n increases, n-peptides provide progressively more detailed

sequential information. However, for n C 3, the amount of

information parameters increases dramatically, and com-

putation becomes not only impractical but also susceptible

to the danger of overfitting. So, in the current study, we

chose n = 1 and 2.

Classification protocol

SVM is a very powerful and popular method for supervised

pattern recognition and has been widely used in the realm

of bioinformatics [3, 6, 29, 37, 38, 42, 44–46]. To handle a

multiclass problem, the one-versus-one (OVO) and one-

versus-rest (OVR) approaches are generally applied to

extend traditional SVM. In this work, the OVO strategy

was employed to make predictions using radial basis

functions (RBF). The SVM implementation was based on

LibSVM written by Chang and Lin [5]. The grid search

method was applied to tune the regularization parameter

C and the kernel width parameter c.

Table 1 Scheme for reduced amino acid alphabets based on various

protein blocks methods

Size Protein blocks method

20 G-I–V-F-Y-W-A-L-M-E-Q-R-K–P-N-D-H–S-T-C

13 G-IV-FYW-A-L-M-E-QRK-P-ND-HS-T-C

11 G-IV-FYW-A-LM-EQRK-P-ND-HS-T-C

9 G-IV-FYW-ALM-EQRK-P-ND-HS-TC

8 G-IV-FYW-ALM-EQRK-P-ND-HSTC

5 G-IVFYW-ALMEQRK-P-NDHSTC

Clustered amino acids are shown in bold
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Performance assessment

The capability of the method was evaluated using the sen-

sitivity (Sn), specificity (Sp), overall accuracy (OA), average

accuracy (AA), and Matthew’s correlation coefficient

(MCC). These measurements are expressed as follows:

SnðiÞ ¼ TPðiÞ
TPðiÞ þ FNðiÞ ; ð1Þ

SpðiÞ ¼ TNðiÞ
TNðiÞ þ FPðiÞ ; ð2Þ

OA ¼ 1

N

Xk

i¼1

TPðiÞ; ð3Þ

AA ¼ 1

N

Xk

i¼1

SnðiÞ; ð4Þ

where k (k = 5) is the number of families and N is the total

number of sequences in the final dataset. TP(i), TN(i),

FP(i), and FN(i) represent the true positives, true negatives,

false positives, and false negatives for family i.

Results and discussion

Three cross-validation methods, namely the subsampling

test, independent dataset test, and jackknife test, are often

employed to evaluate the predictive capability of a pre-

dictor. Among these three methods, the jackknife test is

deemed as the most objective and rigorous [12] and can

always yield a unique outcome, as demonstrated by a

penetrating analysis in a recent comprehensive review [11];

it has been widely and increasingly adopted [20, 28, 30, 32,

35, 36, 43]. Accordingly, the jackknife test was used to

examine the performance of the model proposed in this

study. In the jackknife test, each sequence in the training

dataset is in turn singled out as an independent test sample

and all the rule parameters are calculated without using this

one.

Ketoacyl synthase family classification

Each sequence in the dataset was translated into discrete

feature vectors described by the frequencies of the

n-peptide composition of RAAA. We firstly encoded

protein sequences using the frequency of 20 amino acid

and 400 dipeptide compositions. The jackknife test

results are shown in the first two columns of Table 3.

The overall accuracy of dipeptide composition reached

96.44% with average accuracy of 92.80%, which are

higher than those of amino acid composition. Especially,

all proteins in the KS2, KS3, and KS5 families were

correctly recognized by using 400 dipeptides (i.e., sen-

sitivity 100%).

To investigate whether a special class or property of

amino acid affects the predictive accuracy and to deter-

mine the optimal amount of information, we compared the

predictive capability of models trained by using the

n-peptide (n = 1, 2) composition of RAAA of different

sizes. The predictive sensitivity, specificity, average

accuracy, and overall accuracy are listed in Table 3. As

shown in Table 3, the best predictive results were obtained

based on the 2-peptide composition of the reduced amino

acid alphabet of size 13 (n = 2, S = 13). Although the

overall accuracies were equal for the 2-peptide composi-

tion of RAAA with sizes S = 11, 13, and 20, the best

MCC values for each family were obtained for the case

S = 13 (Fig. 1). When n = 2 and S = 13, the MCC values

for classification of KS1, KS2, KS3, KS4, and KS5 were

0.93, 1, 1, 0.88, and 1, respectively. Besides, the average

accuracy of RAAA with n = 2 and S = 13 is the highest

among all parameters. These results indicate that the

n-peptide composition of reduced amino acid alphabets

could extract more prominent structural and functional

Table 2 Feature vector dimensions of n-peptide compositions with different RAAA sizes

n-Peptide Dimension of different amino acid alphabet sizes (S)

S = 20 S = 13 S = 11 S = 9 S = 8 S = 5

n = 1 20 13 11 9 8 5

n = 2 400 169 121 81 64 25

MCCðiÞ ¼ TPðiÞ � TNðiÞ � FPðiÞ � FNðiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPðiÞ þ FNðiÞÞ � ðTNðiÞ þ FPðiÞÞ � ðTPðiÞ þ FPðiÞÞ � ðTNðiÞ þ FNðiÞÞ

p ; ð5Þ
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information than the original amino acid or dipeptide

composition.

Comparison with other methods

It is natural to ask whether the SVM model proposed here

is superior to other state-of-the-art methods. For further

investigation of the results, we compared the performance

of SVM with that of random forest and naı̈ve Bayes clas-

sifiers using the same features (2-peptide composition of

the reduced amino acid alphabet of size 13). Random forest

and naı̈ve Bayes models were tested on the final dataset

containing 225 sequences and implemented in WEKA [22].

The results are presented in Table 4. It is shown that the

average accuracy of SVM is approximately 9% and 20%

higher than the random forest and naı̈ve Bayes classifiers,

respectively. This result demonstrates that SVM can be used

to identify ketoacyl synthase family with higher accuracy.

Conclusions

We report a support vector machine-based approach for

ketoacyl synthase family classification using reduced

amino acid alphabets. The use of reduced amino acid

alphabets not only provides an efficient and accurate way

of protein vectorization for sequence-based protein classi-

fication systems but also achieves a remarkable improve-

ment in terms of computational efficiency. High predictive

accuracies show that the reduced n-peptide composition

clustered based on protein blocks can extract more useful

information than original 20 amino acid or 400 dipeptide

compositions, and also demonstrate that our proposed

method is a potentially useful tool for classification of

ketoacyl synthase family. Moreover, as the dimension of

the feature space was reduced by using RAAA (from 400

to 169 dimensions in this work), the reduced amino acid

alphabet scheme could provide novel insights into proteo-

mic classification tasks.

Table 3 Result of SVM model based on different features

Family (%) n-Peptide composition of RAAA with size S (n, S)

(1,20) (2,20) (1,13) (2,13) (1,11) (2,11) (1,9) (2,9) (1,8) (2,8) (1,5) (2,5)

KS1

Sn 50.00 81.25 50.00 87.50 56.25 81.25 62.50 62.50 56.25 68.75 43.75 37.50

Sp 99.47 100.00 98.97 100.00 97.87 100.00 98.92 100.00 99.47 100.00 98.79 99.47

KS2

Sn 96.67 100.00 93.33 100.00 96.55 100.00 83.33 96.67 86.67 90.00 53.33 70.00

Sp 99.41 99.47 99.43 100.00 97.06 99.47 97.67 98.92 97.69 94.95 95.65 97.75

KS3

Sn 90.00 100.00 95.00 100.00 88.75 100.00 95.00 100.00 92.50 96.25 88.75 98.75

Sp 87.41 95.14 90.58 100.00 87.14 95.14 83.57 92.31 87.05 92.31 73.88 84.67

KS4

Sn 65.52 82.76 65.52 79.31 51.72 82.76 41.38 79.31 55.17 82.76 31.03 72.41

Sp 95.70 100.00 95.79 100.00 97.27 100.00 98.37 100.00 96.24 97.88 94.15 97.75

KS5

Sn 98.57 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 95.71 97.14

Sp 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.04 100.00

OA 87.56 96.44 89.33 96.44 85.78 96.44 85.78 94.22 86.67 92.89 75.56 86.67

AA 80.15 92.80 80.77 93.36 78.65 92.80 76.44 87.70 78.12 87.55 62.51 75.16

The best results are shown in bold

Fig. 1 MCC for five ketoacyl synthase families by using 2-peptide

compositions with different RAAA sizes
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