
Hindawi Publishing Corporation
Computational and Mathematical Methods in Medicine
Volume 2013, Article ID 530696, 6 pages
http://dx.doi.org/10.1155/2013/530696

Research Article
Na\ve Bayes Classifier with Feature Selection to
Identify Phage Virion Proteins

Peng-Mian Feng,1 Hui Ding,2 Wei Chen,3 and Hao Lin2

1 School of Public Health, Hebei United University, Tangshan 063000, China
2 Key Laboratory for Neuroinformation of Ministry of Education, Center of Bioinformatics, School of Life Science and Technology,
University of Electronic Science and Technology of China, Chengdu 610054, China

3Department of Physics, School of Sciences, Center for Genomics and Computational Biology, Hebei United University,
Tangshan 063000, China

Correspondence should be addressed to Wei Chen; greatchen@heuu.edu.cn and Hao Lin; hlin@uestc.edu.cn

Received 10 March 2013; Revised 16 April 2013; Accepted 28 April 2013

Academic Editor: Yanxin Huang

Copyright © 2013 Peng-Mian Feng et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Knowledge about the protein composition of phage virions is a key step to understand the functions of phage virion proteins.
However, the experimental method to identify virion proteins is time consuming and expensive. Thus, it is highly desirable to
develop novel computational methods for phage virion protein identification. In this study, a Naı̈ve Bayes based method was
proposed to predict phage virion proteins using amino acid composition and dipeptide composition. In order to remove redundant
information, a novel feature selection technique was employed to single out optimized features. In the jackknife test, the proposed
method achieved an accuracy of 79.15% for phage virion and nonvirion proteins classification, which are superior to that of other
state-of-the-art classifiers.These results indicate that the proposed method could be as an effective and promising high-throughput
method in phage proteomics research.

1. Introduction

Phage is a virus that infects and replicates within bacteria.
Phages are widely distributed in locations populated by
bacterial hosts, such as soil or the intestines of animals. A
complete infectious phage viral particle (also, namely, phage
virion) consists of an inner core of nucleic acid which gives
the virus infectivity and a protein coat (called a capsid)
which encases the nucleic acid and provides specificity, that
is, determines which organisms the virus can infect.

The nucleic acid of phage virions is either RNA or DNA.
Proteins of phage virions include structural proteins and non-
structural proteins. Structural proteins commonly termed
“phage virion proteins” are essential materials of the infec-
tious viral particles, including shell proteins, envelope pro-
teins, and virus particle enzymes. Nonstructural proteins
(namely, phage nonvirion proteins) refer to that encoded
by the viral genome and play important roles in biological
process of viral genome replication and expression, but they

do not bind to phage virions. Due to the distinct functions
between phage virion proteins and phage nonvirion proteins,
knowledge about the protein composition of phage virions is
an essential step to further understand the functions of phage
virions.

Although the use of mass spectrometry (MS) for the
identification of phage virion proteins has become popular
[1], it has not kept pace with the explosive growth of protein
sequences generated in the postgenomic age. Hence, it is
highly desired to develop automated methods for timely and
reliably classifying the protein composition of phage virions.

To the best of our knowledge, there is no computational
system for the classification of phage virion proteins. In the
current study, we propose a Näıve Bayes based computational
model for predicting phage virion proteins using amino acid
compositions and dipeptide compositions. The correlation-
based feature subset selection algorithm [2]was introduced to
find the optimal feature set. By using the optimized features,
the proposed model was evaluated in a benchmark dataset

http://dx.doi.org/10.1155/2013/530696


2 Computational and Mathematical Methods in Medicine

in the jackknife test. The performance demonstrates that this
model could be a potentially useful tool for the annotation of
the phage proteins.

According to some recent comprehensive reviews [3, 4]
and demonstrated by a series of recent publications [5–10], to
establish a really useful statistical predictor, we need to con-
sider the following procedures: (i) construct or select a valid
benchmark dataset to train and test the predictor; (ii) for-
mulate the statistical samples with an effective mathematical
expression that can truly reflect their intrinsic correlation
with the target to be predicted; (iii) introduce or develop a
powerful algorithm (or engine) to operate the prediction; (iv)
properly perform cross-validation tests to objectively evalu-
ate the anticipated accuracy of the predictor; (v) establish a
user-friendly web server for the predictor that is accessible to
the public. In the following, let us describe how to deal with
these steps one by one.

2. Materials and Methods

2.1. Dataset. The raw datasets adopted in this research were
extracted from the UniProt [11]. For the purpose of obtaining
a reliable benchmark dataset, the following stepswere consid-
ered. Firstly, only the experimentally confirmed phage virion
and phage nonvirion protein sequences were included. Sec-
ondly, the sequences which are fragments of other proteins
were dislodged. Thirdly, sequences containing nonstandard
letters, that is, “B,” “X,” or “Z,”were excluded as theirmeanings
are ambiguous. After following the previous strict screening
procedures, we obtained 121 phage virion protein sequences
and 231 phage nonvirion protein sequences.

To prepare a high quality dataset, the CD-HIT program
[12] was used to prune the data. By setting the cutoff of
sequence identity to 40%, 307 sequenceswere remained in the
final benchmark dataset, including 99 phage virion protein
sequences and 208 phage nonvirion protein sequences.

2.2. Feature Vector. One of the most important parts for
identifying protein attributes is to generate a set of proper
informative parameters to encode the protein sequences. To
avoid completely losing the sequence-order information, the
pseudo amino acid composition (PseAAC) was proposed
[13, 14] to replace the simple amino acid composition (AAC)
for representing the sample of a protein. Since the concept of
PseAAC was proposed in 2001 [13], it has been widely used
to study various attributes of proteins, such as identifying
bacterial virulent proteins [15], predicting supersecondary
structure [16], predicting protein subcellular location [16–
19], predicting membrane protein types [20], discriminat-
ing outer membrane proteins [21], identifying antibacterial
peptides [22], identifying allergenic proteins [23], predicting
metalloproteinase family [24], predicting protein structural
class [25], identifying GPCRs and their types [26], iden-
tifying protein quaternary structural attributes [27], pre-
dicting protein submitochondria locations [28], identifying
risk type of human papillomaviruses [29], identifying cyclin
proteins [30], predicting GABA(A) receptor proteins [31],
and classifying amino acids [32], among many others (see

a long list of papers cited in the References section of [3]).
Recently, the concept of PseAAC was further extended to
represent the feature vectors of DNA and nucleotides [7,
9], as well as other biological samples (see, e.g., [33, 34]).
Because it has been widely and increasingly used, recently
two powerful softwares, called “PseAAC-Builder” [35] and
“propy” [36], were established for generating various special
Chou’s pseudoamino acid compositions.

The amino acid composition and dipeptide composition
are the general forms of PseAACand the simplest parameters,
which also have been widely applied in the realm of protein
prediction [37–40]. Hence, every protein sequence in the
benchmark dataset was encoded in a discrete vector as
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, . . . , 𝑓

420
]

𝑇
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where f
𝑖
is the normalized occurrence frequencies of the 20

amino acids (𝑖 = 1, 2, . . . , 20) and the 400 dipeptides (𝑖 =
21, 22, . . . , 420) in the protein sequence, respectively. 𝑇 is the
transposing operator.

2.3. Feature Selection. Inclusion of redundant and noisy
features in the model building process would cause poor
predictive performance and increased computation. Feature
selection is the process of removing irrelevant features and
is extremely useful in reducing the dimensionality of the
data and improving the predictive accuracy. To reduce the
dimension of the feature space and improve the precision of
phage virion and nonvirion protein classification, the filter
method Correlation-based Feature Selection [2] combined
with Best-first search strategy was used in the process of
feature selection in the current work.

The process starts with an empty set of features and
generates all possible single feature expansions. The subset
with the highest accuracy is chosen and expanded in the
same way by adding single features. If the accuracy does not
maximize with the expansion of a subset, the search drops
back to the next best unexpanded subset and continues from
there until all features are added. The subset with the highest
accuracy will be selected as the final optimized feature set
[41].

2.4. Naı̈ve Bayes. Näıve Bayes is an effective statistical classi-
fication algorithm [42] and has been successfully used in the
realm of bioinformatics [43–46]. The basic theory of Naı̈ve
Bayes is similar to that of Covariance Determinant (CD) [47–
52]. But for Näıve Bayes, it assumes the attribute variables
to be independent from each other given the outcome. This
assumption greatly simplifies the calculation of conditional
probabilities and also overcomes the divergent problemwhen
using the CD prediction engine to deal with those systems
in which the components of constituent feature vectors are
normalized.

In the Näıve Bayes framework, a classification problem
can be seen as the problem of finding the outcome with
maximumprobability given a set of observed variables. Given
a phage viral protein example, described by its feature vector
F = (𝑓
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Since the current work is intend to classify phage virion and
nonvirion proteins, a binary class C ∈ {0, 1} was generated,
where 1 denotes that the sample was predicted as a phage
virion protein and 0 denotes phage nonvirion protein. For the
binary classification, the class for the protein sample could be
determined by comparing two posteriors as
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Taking the logarithm of (2), we obtain
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Hence the sample will be predicted as 1 (phage virion protein)
if

log
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and 0 (phage nonvirion protein) for otherwise. 𝜃 is the
threshold determining the trade-off between sensitivity and
specificity and can be trained on the training dataset to
maximize the prediction performance.

2.5. Performance Evaluation. The performance of the pro-
posed model was evaluated using sensitivity (Sn), specificity
(Sp), and accuracy (Acc), which are expressed as

Sn = TP
TP + FN

,

Sp = TN
TN + FP

,

Acc = TP + TN
TP + FN + TN + FP

.

(5)

TP, TN, FP, and FN represent the number of the correctly
recognized phage virion proteins, the number of the correctly
recognized phage nonvirion proteins, the number of phage
nonvirion proteins recognized as phage virion proteins, and
the number of phage virion proteins recognized as phage
nonvirion proteins, respectively.

As the performance of the current classifier depends on
the threshold 𝜃 as given in (4), the threshold independent
parameter, receiver operating characteristic curve, was em-
ployed as well. Therefore, the quality of a classifier can be
objectively evaluated by measuring the area under the
receiver operating characteristic curve (auROC). The value
of auROC score ranges from 0 to 1, with a score of 0.5
corresponding to a random guess and a score of 1.0 indicating
a perfect separation.

Table 1: Predictive performance of Näıve Bayes based on different
features.

Feature dimensions Sn (%) Sp (%) Acc (%) auROC
420 53.54 83.17 75.57 0.758
38 75.76 80.77 79.15 0.855

3. Results and Discussion

Three cross-validation methods, namely, subsampling test,
independent dataset test, and jackknife test, are often
employed to evaluate the predictive capability of a predictor.
Among the three methods, the jackknife test is deemed the
most objective and rigorous one that can always yield a
unique outcome as demonstrated by a penetrating analysis
in a recent comprehensive review [53] and hence has been
widely and increasingly adopted by investigators to examine
the quality of various predictors (see, e.g., [7, 19, 21, 30, 54–
56]). Accordingly, the jackknife test was used to examine the
performance of the model proposed in the current study. In
the jackknife test, each sequence in the training dataset is
in turn singled out as an independent test sample, and all
the rule parameters are calculated without including the one
being identified.

3.1. Prediction of Phage Virion Proteins. We trained the Näıve
Bayes classifier using Waikato Environment for Knowledge
Analysis (WEKA) [57] on the benchmark dataset. As shown
in Table 1, an auROC score of 0.758 and an accuracy of
75.57% with an average sensitivity of 53.54% and an average
specificity of 83.17% were obtained for the classification
of phage virion and nonvirion proteins by using all the
420 features, that is, 20 amino acid compositions and 400
dipeptide compositions.

In order to identify prominent features that can distin-
guish between phage virion and nonvirion proteins, feature
selection method as introduced in Section 2.3 was carried
out to eliminate the redundant features using WEKA in a
tenfold cross-validation approach on the benchmark dataset.
We found that the proposed method achieved a maximum
accuracy of 79.48% and auROC of 0.86 when the feature
dimension reduced to 38 (i.e., V, T, A, H, K, E, R, S, LE,
VT, VG, MK, TA, TS, AT, HI, KL, KI, KH, KN, KK, KD,
KE, KW, KR, DK, EF, EL, EV, EK, EE, EW, CE, WK, RE, SG,
GV, and GG). The jackknife test results of the Naı̈ve Bayes
classifier based on the 38 optimized features were listed in
Table 1. As it can be seen from Table 1, the current method
yielded a best auROC score of 0.855 and a predictive accuracy
of 79.15%with an average sensitivity of 75.76% and an average
specificity of 80.77% (Table 1). Both predictive accuracy and
auROC are higher than that of the model based on the 420
features.

3.2. Comparison with Other Methods. To the best of our
knowledge, there exists no theoretical method for phage
virion and nonvirion protein classifications. Therefore, we
cannot provide the comparison analysis with published
results to confirm that themodel proposed here is superior to
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Table 2: Comparison of Näıve Bayes with other methods by using optimized features.

Classifier Sn (%) Sp (%) Acc (%) auROC
BayesNet 68.69 79.81 76.22 0.799
RBFnetwork 72.73 82.21 79.15 0.839
Random Forest 55.56 84.62 75.24 0.802
LogitBoot 52.53 85.10 74.59 0.795
SVM 63.64 86.54 79.15 0.836
J48 61.62 77.88 72.64 0.671
Näıve Bayes 75.76 80.77 79.15 0.855

other methods. However, the proposed Näıve Bayes classifier
was compared with other state-of-the-art classifiers, that is,
BayesNet, RBFnetwork, Random Forest, J48, Support Vector
Machine (SVM), and LogitBoot. All the classifiers were
compared on the benchmark dataset based on the optimized
features (i.e., V, T, A, H, K, E, R, S, LE, VT, VG, MK, TA, TS,
AT, HI, KL, KI, KH, KN, KK, KD, KE, KW, KR, DK, EF, EL,
EV, EK, EE, EW, CE, WK, RE, SG, GV, and GG). Their best
predictive results from jackknife test were shown in Table 2.

The predictive accuracy of Naı̈ve Bayes is approximately
3%, 4%, 5%, and 7% higher than that of the BayesNet,
Random Forest, LogitBoot, and J48 classifiers, respectively.
Although the accuracies of RBFnetwork and SVM are equal
to that of Näıve Bayes, their auROC scores are lower than that
of Näıve Bayes.These results indicate that the proposedNäıve
Bayes model can be effectively used to classify phage virion
and nonvirion proteins.

4. Conclusions

In this study, the Näıve Bayes classifier with feature selection
method is presented to identity phage virion proteins based
on the primary sequence information. By using Correlation-
based Feature Subset Selection algorithm, the feature dimen-
sions were reduced, and 38 prominent features that could
remarkably improve the predictive accuracies were obtained.
However, the detailed analyses of the selected features are
required to provide more information about their roles in
biological activity.The accuracy for the classification of phage
virion and nonvirion proteins reached 79.15% in the jackknife
test, indicating that the proposed method is an effective
tool for phage virion protein identification. It is expected
that the presented model will provide novel insights into
the research on phage proteomics. Since user-friendly and
publicly accessible web servers represent the future direction
for developing practically more useful predictors [58], we
shall make efforts in our future work to provide a web server
for the method presented in this paper.
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apoptosis protein locationswith genetic algorithms and support
vector machines through a new mode of pseudo amino acid
composition,” Protein and Peptide Letters, vol. 17, no. 12, pp.
1473–1479, 2010.

[19] S. Mei, “Predicting plant protein subcellular multi-localization
by Chou’s PseAAC formulation based multi-label homolog
knowledge transfer learning,” Journal ofTheoretical Biology, vol.
310, pp. 80–87, 2012.

[20] Y. K. Chen and K. B. Li, “Predicting membrane protein types
by incorporating protein topology, domains, signal peptides,
and physicochemical properties into the general form of Chou’s
pseudo amino acid composition,” Journal ofTheoretical Biology,
vol. 318, pp. 1–12, 2013.

[21] M. Hayat and A. Khan, “Discriminating outer membrane
proteins with fuzzy K-nearest neighbor algorithms based on the
general form of Chou’s PseAAC,” Protein and Peptide Letters,
vol. 19, no. 4, pp. 411–421, 2012.

[22] M.Khosravian, F. K. Faramarzi,M.M. Beigi,M. Behbahani, and
H. Mohabatkar, “Predicting antibacterial peptides by the con-
cept of Chou’s pseudo-amino acid composition and machine
learning methods,” Protein and Peptide Letters, vol. 20, no. 2,
pp. 180–186, 2012.

[23] H.Mohabatkar,M.M. Beigi, K. Abdolahi, and S.Mohsenzadeh,
“Prediction of allergenic proteins by means of the concept of
Chou’s pseudo amino acid composition and amachine learning
approach,”Medicinal Chemistry, vol. 9, no. 1, pp. 133–137, 2013.

[24] M. M. Beigi, M. Behjati, and H. Mohabatkar, “Prediction of
metalloproteinase family based on the concept ofChou’s pseudo
amino acid composition using a machine learning approach,”
Journal of Structural and Functional Genomics, vol. 12, no. 4, pp.
191–197, 2011.

[25] S. S. Sahu and G. Panda, “A novel feature representation
method based on Chou’s pseudo amino acid composition for
protein structural class prediction,” Computational Biology and
Chemistry, vol. 34, no. 5-6, pp. 320–327, 2010.

[26] R. Zia-Ur and A. Khan, “Identifying GPCRs and their types
with Chou’s pseudo amino acid composition: an approach from
multi-scale energy representation and position specific scoring
matrix,” Protein and Peptide Letters, vol. 19, no. 8, pp. 890–903,
2012.

[27] X. Y. Sun, S. P. Shi, J. D. Qiu, S. B. Suo, S. Y. Huang, and R. P.
Liang, “Identifying protein quaternary structural attributes by
incorporating physicochemical properties into the general form
of Chou’s PseAAC via discrete wavelet transform,” Molecular
BioSystems, vol. 8, no. 12, pp. 3178–3184, 2012.

[28] L. Nanni and A. Lumini, “Genetic programming for creating
Chou’s pseudo amino acid based features for submitochondria
localization,” Amino Acids, vol. 34, no. 4, pp. 653–660, 2008.

[29] M. Esmaeili, H. Mohabatkar, and S. Mohsenzadeh, “Using the
concept of Chou’s pseudo amino acid composition for risk type
prediction of human papillomaviruses,” Journal of Theoretical
Biology, vol. 263, no. 2, pp. 203–209, 2010.

[30] H. Mohabatkar, “Prediction of cyclin proteins using Chou’s
pseudo amino acid composition,” Protein and Peptide Letters,
vol. 17, no. 10, pp. 1207–1214, 2010.

[31] H.Mohabatkar,M.MohammadBeigi, andA. Esmaeili, “Predic-
tion of GABAA receptor proteins using the concept of Chou’s
pseudo-amino acid composition and support vector machine,”
Journal of Theoretical Biology, vol. 281, no. 1, pp. 18–23, 2011.

[32] D. N. Georgiou, T. E. Karakasidis, J. J. Nieto, and A. Torres, “Use
of fuzzy clustering technique and matrices to classify amino
acids and its impact to Chou’s pseudo amino acid composition,”
Journal of Theoretical Biology, vol. 257, no. 1, pp. 17–26, 2009.

[33] B. Q. Li, T. Huang, L. Liu, Y. D. Cai, and K. C. Chou,
“Identification of colorectal cancer related genes with mRMR
and shortest path in protein-protein interaction network,” PLoS
ONE, vol. 7, no. 4, Article ID e33393, 2012.

[34] T. Huang, J. Wang, Y. D. Cai, H. Yu, and K. C. Chou, “Hepatitis
C virus network based classification of hepatocellular cirrhosis
and carcinoma,”PLoSONE, vol. 7, no. 4,Article ID e34460, 2012.

[35] P. Du, X. Wang, C. Xu, and Y. Gao, “PseAAC-Builder: a
cross-platform stand-alone program for generating various
special Chou’s pseudo-amino acid compositions,” Analytical
Biochemistry, vol. 425, no. 2, pp. 117–119, 2012.

[36] D. S. Cao, Q. S. Xu, and Y. Z. Liang, “Propy: a tool to generate
various modes of Chou’s PseAAC,” Bioinformatics, vol. 29, no. 7,
pp. 960–962, 2013.

[37] L. Montanucci, P. Fariselli, P. L. Martelli, and R. Casadio,
“Predicting protein thermostability changes from sequence
upon multiple mutations,” Bioinformatics, vol. 24, no. 13, pp.
i190–i195, 2008.

[38] M. M. Gromiha and M. X. Suresh, “Discrimination of
mesophilic and thermophilic proteins using machine learning
algorithms,” Proteins, vol. 70, no. 4, pp. 1274–1279, 2008.

[39] L. C. Wu, J. X. Lee, H. D. Huang, B. J. Liu, and J. T. Horng, “An
expert system to predict protein thermostability using decision
tree,” Expert Systems with Applications, vol. 36, no. 5, pp. 9007–
9014, 2009.

[40] H. Lin andW. Chen, “Prediction of thermophilic proteins using
feature selection technique,” Journal ofMicrobiologicalMethods,
vol. 84, no. 1, pp. 67–70, 2011.

[41] W. Chen and H. Lin, “Identification of voltage-gated potassium
channel subfamilies from sequence information using support
vectormachine,”Computers in Biology andMedicine, vol. 42, no.
4, pp. 504–507, 2012.

[42] T.M.Mitchell,Machine Learning, McGraw-Hill, New York, NY,
USA, 1997.

[43] J. Cao, R. Panetta, S. Yue, A. Steyaert, M. Young-Bellido, and
S. Ahmad, “A naive Bayes model to predict coupling between
seven transmembrane domain receptors andG-proteins,”Bioin-
formatics, vol. 19, no. 2, pp. 234–240, 2003.



6 Computational and Mathematical Methods in Medicine

[44] M. Yousef, S. Jung, A. V. Kossenkov, L. C. Showe, and M.
K. Showe, “Näıve Bayes for microRNA target predictions—
machine learning for microRNA targets,” Bioinformatics, vol.
23, no. 22, pp. 2987–2992, 2007.

[45] Y. Murakami and K. Mizuguchi, “Applying the Naı̈ve Bayes
classifier with kernel density estimation to the prediction of
protein-protein interaction sites,” Bioinformatics, vol. 26, no. 15,
pp. 1841–1848, 2010.

[46] F. Sambo, E. Trifoglio, B. Di Camillo, G. M. Toffolo, and C.
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