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The functions of Golgi apparatus are to store, package and distribute proteins. Knowing the type of a
Golgi-resident protein will provide in-depth insight into its function. In this study, we developed a support
vector machine-based method to identify the types of Golgi-resident proteins by using only amino acid
sequence information. A strictly and objective dataset including 137 proteins with the sequence identity
b25% was used for training and testing the support vector machine. The analysis of variance was proposed
to find out the optimized feature set. In the leave-one-out cross-validation, the maximum overall accuracy
of 85.4% was achieved with the area under the receiver operating characteristic curves of 0.878. The results
demonstrate that the proposed method can be used to discriminate the types of Golgi-resident proteins.
An on-line server subGolgi is freely available at http://lin.uestc.edu.cn/server/subGolgi2.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The Golgi apparatus is an important eukaryotic organelle, which is
consisted of a stack of membrane-bounded cisternae located between
the endoplasmic reticulum and the cell surface. Many different en-
zymes and other proteins are retained in Golgi apparatus to perform
their various synthetic activities [1]. The cis-Golgi and trans-Golgi ap-
paratus are thought to be specialized cisternae leading proteins in
and out of the Golgi apparatus [2]. The function of cis-Golgi proteins
is to receive and process the biosynthetic output from endoplasmic
reticulum. Then the proteins modified by cis-Golgi proteins are pack-
aged and sent to the required destination by trans-Golgi proteins.
Many studies have demonstrated that neurodegenerative diseases,
such as Parkinson's disease [3] and Alzheimer's disease [4] are associ-
ated with the defects in the Golgi apparatus [5]. Therefore, correctly
identifying the types of Golgi-resident proteins is very important for
fully understanding Golgi-resident proteins' roles in the process of
transport and modification of transited proteins.

Experimentally identifying the types of Golgi-resident proteins is
a good starting point for in-depth study of their functions. However,
it is time-consuming and costly for biochemical experiments to sys-
tematically investigate the types of Golgi-resident proteins because
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large amounts of potential proteins are required to interrogate [6].
Phylogenetic tree is an accepted method to identify the types of
Golgi-resident proteins. Although this method is not particularly ex-
pensive, it is more time-consuming. Furthermore, phylogenetic tree
can not provide any information about the proteins whose homolo-
gies can not be found in benchmark dataset.

Machine learning techniques are powerful tools for the annotation
of protein functions [7]. Manymethods for predicting protein localiza-
tions have provided predictive information about Golgi-resident pro-
teins [8,9]. However, only a limited number of methods have been
specifically designed for the study of Golgi-resident proteins. Yuan
and Teasdale have predicted the Golgi type II membrane proteins
based on their transmembrane domains [10]. However, only 25% of
Golgi-resident proteins were estimated to contain transmembrane
regions in Arabidopsis thaliana [11]. Chou et al. [6] have designed a
server called GolgiP for the prediction of Golgi-resident proteins in
plants. However, the sequences' similarity in training data is so high
that the predictive performance of their proposed method might be
overestimated. Recently, we have developed a tool subGolgi to dis-
criminate between cis-Golgi and trans-Golgi proteins [12]. The overall
accuracy was 74.7% which is less than adequate. Therefore, there is an
urgent need to develop efficient computational tools for accurately
identifying the types of Golgi-resident proteins.

In this paper, we presented a discriminative computational frame-
work to identify the cis-Golgi and trans-Golgi proteins according
to primary sequence information. The analysis of variance (ANOVA)
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was proposed to optimize the feature set. As a result, the predictive
accuracy of 85.4% was achieved with an area under the receiver oper-
ating characteristic curves (auROC) of 0.878 in the leave-one-out
cross-validation, suggesting that the proposed method can be effi-
ciently used to annotate the types of Golgi-resident proteins.

2. Materials and methods

2.1. Dataset

Both amino acid sequences and annotation information of Golgi-
resident proteins were extracted from Universal Protein Resource
(Uniprot) [13]. The following criteria were performed to guarantee
the quality of benchmark data: 1) Only those proteins annotated by
one subGolgi location were selected, because the number of proteins
with two subGolgi locations is too small to have statistical significance.
2) Proteins with ambiguous protein existence annotations, such as
“uncertain,” “predicted” and “inferred from homology”were excluded
because they lack confidence. 3) Only those proteins with experimen-
tal confirmed subGolgi location were included because they can pro-
vide correct and validated information. 4) The sequences which are
fragments of other proteins were excluded because their information
is redundant and not integrity. 5) Sequences containing nonstandard
letters, such as “B,” “X” or “Z,” were excluded because their meanings
are ambiguous.

After strictly following the above procedures, we obtained 671
proteins including 162 cis-Golgi proteins and 509 trans-Golgi pro-
teins. It is well-known that sequence similarity in dataset correlates
with estimated accuracy. High similarity data would cause two prob-
lems: one is that the data would be lack of enough representativeness
due to the high similarity of the sequences in cis-Golgi and trans-Golgi
proteins; the other is that the results might be misleading because
of using the biased data to train the proposed method. Therefore, it
is necessary to get rid of redundancy and homology bias. In this
study, we used the PISCES program [14] to remove the highly similar
sequences. The following is a guide on how to use the program
PISCES to remove the similar sequences. At first, open the web server
(http://dunbrack.fccc.edu/Guoli/PISCES_InputD.php) and paste the
protein sequences with FASTA format into the textbox or upload file
with FASTA format. Secondly, set the cutoff of sequence identity (Max-
imum percentage identity), minimum chain length and maximum
chain length. Thirdly, press the submit button at the bottom and the
user need to fill user name, email address and institution in a new
windows. Finally, click on the Submit button. Then the links of results
will be sent to the provided email address. The present study sets 25%
as the cutoff of sequence identity with the minimum chain length of
25aa and the maximum chain length of 10,000aa, and about 80% of
proteins in raw data have been removed. As a result, a total of 42
cis-Golgi and 95 trans-Golgi proteins were obtained.

It is important to use the independent dataset to evaluate the
performance of the method. Here, we collected 13 cis-Golgi and 51
trans-Golgi proteins from Uniprot, which is independent from train-
ing set. All training data and independent data can be found from
http://lin.uestc.edu.cn/server/SubGolgi/data.

2.2. Features

It is one of the most important parts for pattern recognition to
generate a set of informative parameters. In recent decades, various
parameters such as PseAAC [15–17], physicochemical properties of
amino acids [18–20] and GO information [21–23] have been success-
fully employed in many protein structure and function predictions.
The proximate dipeptide compositions are also accepted parameters
and have been widely applied in the realm of protein prediction
[24,25]. Here, we extended proximate dipeptide compositions to
g-gap dipeptide compositions [26]. A Golgi-resident protein with
length of L can be characterized by a 400 dimensional feature vector
and described as follows:

Fg400 ¼ f g1; f
g
2; ⋯; f

g
i ; ⋯; f

g
400

� �T ð1Þ

here symbol T denotes the transposition of the vector. fi
g
is the fre-

quency of the i-th g-gap dipeptide and expressed as:
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i¼1n

g
i ¼ ng

i = L−g−1ð Þ ð2Þ

here ni
g denotes the number of the i-th g-gap dipeptide. 0-gap dipep-

tides denote proximate dipeptides.

2.3. Feature selection technique

The original feature set generally contains redundant information
or noise which will reduce the predictive accuracy. Thus, it is neces-
sary to pick out informative parameters. Some techniques such as
principal component analysis (PCA) [27] and minimal-redundancy-
maximal-relevance (mRMR) [19] have been presented for feature se-
lection. In this study, we proposed the ANOVA to perform feature
selection. The ANOVA method can rank the features by measuring
the ratio between their variances between groups and within groups
[24]. The ratio reveals how strong the λ-th feature is related to the
group variables. The ratio F value (F(λ)) of λ-th g-gap dipeptide in
two benchmark datasets is defined as the following equation:

F λð Þ ¼ s2B λð Þ
s2W λð Þ ð3Þ

here sB
2(λ) and sW

2 (λ) are the sample variance between groups (also
called Means Square Between, MSB) and sample variance within
groups (also called Mean Square Within, MSW) and can be given by:
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here dfB = K − 1 and dfW = N − K are degrees of freedom for MSB
and MSW, respectively. K and N represent the number of groups
and total number of samples, respectively. fij(λ) denotes the frequen-
cy of the λ-th feature of the j-th sample in the i-th group. ni denotes
the number of sample in the i-th group.

The F(λ) reveals how strong the λ-th feature is related to the
group variables. If there are m g-gap dipeptides whose F(λ) is larger
than a given cutoff Fcutoff, the frequencies of these g-gap dipeptides
are selected as optimized feature set and expressed as:

Fm ¼ f 1; f 2; ⋯; f i; ⋯; f m½ �T ð6Þ

If Fcutoff is set to zero, 400 g-gap dipeptides are all selected. The
larger the Fcutoff is, the less the number of features is. By setting an
appropriate Fcutoff, high-dimensional data can be projected into a
low-dimensional space and the best accuracy can be achieved. The
parameter m or Fcutoff was chosen by using cross-validation.

2.4. Support vector machine

Support vector machine (SVM) is a powerful machine learning
method and has been successfully applied in protein structure and
function prediction [28–31]. The SVM can find a decision boundary
that separates two training data. The decision boundary is a hyper-
plane which maximizes the margin between the two sets in the
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Table 1
The comparison of proposed method with other methods.

Sn (%) OA(%) auROC MCC

cis-Golgi trans-Golgi

SVM (83 dipeptides) 73.8 90.5 85.4 0.878 0.652
SVM (400 dipeptides) 21.4 92.6 70.8 0.569 0.202
SVM (PseAAC) 47.6 87.4 75.2 0.659 0.381
SVM (AAC) 50.0 85.3 74.5 0.683 0.373
PLS(83 dipeptides) 71.4 91.6 85.4 0.851 0.649
Naïve Bayes (63 dipeptides) 50.0 92.6 79.6 0.814 0.487
RBF Network (83 dipeptides) 54.8 89.5 78.8 0.763 0.477

0

100

200

300

400 0

3

6

9

12
15

65

70

75

80

85

90

O
ve

ra
ll 

A
cc

ur
ac

y 
(%

)

F va
lues

Feature Dimension

OAmax=85.4

(Fcutoff=2.17, FD=83)

Fig. 1. The graph for predicting the types of Golgi-resident proteins. Dark line denotes
3-D curve. Three gray lines are projections on three planes (overall accuracy/feature
dimension plane, overall accuracy/F value, F value/feature dimension plane).
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feature vector space. In this study, our implementation utilized the
software LibSVM [32]. The RBF is used to perform the prediction.
The grid search program was applied to tune the regularization pa-
rameter C and kernel width parameter γ by using cross-validation.

2.5. Performance evaluation

As previously described [24,25], three standard measurements:
sensitivity (Sn), overall accuracy (OA) and Matthews correlation co-
efficient (MCC) were used to evaluate the performance of the pro-
posed method, and can be defined by the following formulas:

Sn ¼ TP= TPþ FNð Þ ð7Þ

OA ¼ TPþ TNð Þ= TPþ TNþ FPþ FNð Þ ð8Þ

MCC ¼ TP� TNð Þ− FP� FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ � TNþ FNð Þ � TPþ FNð Þ � TNþ FPð Þp ð9Þ

where TP, TN, FP and FN denote true positives, true negatives, false
positives and false negatives, respectively.

To estimate the robustness of the prediction system, the leave-
one-out cross-validation was carried out. In the leave-one-out cross-
validation, each sequence in the training dataset is in turn singled
out as an independent test sample and all the rule-parameters are cal-
culated without including the one being identified. As a unique out-
come can be yielded, leave-one-out cross-validation was employed
to evaluate the performance of all models. To describe the perfor-
mance of models across the entire range of SVM decision values, re-
ceiver operating characteristic (ROC) curves were performed.

3. Results and discussion

3.1. Prediction accuracies for Golgi protein types

The g-gap dipeptides reflect correlations between two amino acids
with a distance of g amino acids. Let us use as an example the 2-gap
dipeptides, whose frequencies can be achieved by Eq. (2). We rank
the importance of the 400 2-gap dipeptides according to their F
values as defined by Eq. (3). A larger F value of a 2-gap dipeptide sug-
gests that it is more important for the prediction of the types of Golgi
proteins. Furthermore, by adding the ranked 2-gap dipeptides one by
one, we can build 400 individual predictors for the 400 sub-feature
sets. If large F values are used, the selected features will give more
reliable information for classification. However, the number of the
selected features is too small to afford enough information, which
deduces the poor predictive accuracy. For example, when setting F
values larger than 7, the optimized 2-gap dipeptides set contains 10
features. The overall accuracy is only 77.4% in leave-one-out cross-
validation. On the contrary, if the F values are set small, the number
of the selected features is so large that the cluster-tolerant capacity
is reduced which also deduces a bad prediction in cross-validations.
An example is that 400 2-gap dipeptides can only produce the overall
accuracy of 70.8% in leave-one-out cross-validation (Table 1). There-
fore, using appropriate 2-gap dipeptides can yield a prediction with
higher accuracy.

By testing the predictive performances of each of 400 predictors,
we plotted a 3-dimension graph in Fig. 1 for F value, feature dimension
and overall accuracy. As shown in Fig. 1, the overall accuracy reaches
its maximumwhen 83 features (Fcutoff = 2.17) are used. Such 83 fea-
tures were regarded as the optimal sub-feature set of our classifier.
Based on these features, we drew the ROC curves of leave-one-out
cross-validation in Fig. 2 to investigate the change of the sensitivity
of cis-Golgi proteins vs. false cis-Golgi proteins rate (trans-Golgi pro-
teins are predicted as cis-Golgi proteins) by varying decision values
of SVM. It shows that the area under ROC curves (auROC) achieves
0.878 with the MCC of 0.652 (Table 1).

It is necessary to investigate whether other g-gap sub-feature sets
can obtain higher accuracies or not. We varied the g from 0 to 6 and
repeated the feature selection process for finding the maximum accu-
racy of each g-gap dipeptides. Results in Fig. 3 show that the feature
set of optimized 2-gap dipeptides is the best one among the 7 opti-
mized feature sets.

For the display of relationship between sequence identity and pre-
dicted accuracy, we further evaluated the predictive accuracies of pro-
posed model on the datasets with different sequence identity using
leave-one-out cross-validation. Results in Fig. 4 show that, with the
sequence identity varying from 100% to 25%, the overall accuracies de-
crease and stabilize at about 85%, demonstrating that our proposed
method is robust.

3.2. Comparison accuracies

It is natural to askwhether the proposedmethod has a better perfor-
mance than other methods or not. We carried out two comparisons:
onewas to compare the predictive capability of the optimized 2-gap di-
peptideswith that of PseAAC and amino acid composition by using SVM
algorithm; the other was to compare the predictive capability of SVM
with that of Naïve Bayes, RBF Network and partial least squares regres-
sion (PLS regression) by using the optimized 2-gap dipeptides.
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Fig. 2. The ROC curve of leave-one-out cross-validation of the proposed method.
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For the PseAAC, we selected hydrophobicity, hydrophilicity and
mass as amino acid characters. The correlation parameter lambda
varied from 0 to 7 with the step of 1. The weight factor varied from
0.05 to 0.7 with the step of 0.05. By examining 98 sets of PseAAC pa-
rameters, the highest accuracy was obtained when λ = 1 with w =
0.05 and recorded in Table 1. It shows that optimal dipeptides can
achieve the highest accuracy among other parameters (PseAAC, AAC,
400 dipeptides). Furthermore, we compare the performance of SVM
with that of Naïve Bayes, RBF Network and PLS regression by using op-
timal dipeptides. The results were also listed in Table 1. It shows that
the accuracy of PLS regression is higher than that of Naïve Bayes and
RBF Network. Although the OA of PLS regression is as high as the accu-
racy obtained by SVM, the auROC andMCC of SVM are better. Thus we
recommend using the SVM with optimal dipeptides for prediction.

For further evaluating the proposed method, we examined the per-
formance of our method on the independent dataset. Results show that
69.2% cis-Golgi and 90.2% trans-Golgi proteins can be correctly predict-
ed. In our recentwork [12], a total of 95Golgi-resident proteinswith the
sequence identity less than40%were used to train and test themodified
Mahalanobis Discriminant. The overall accuracy of the leave-one-out
cross-validation was only 74.7% with the auROC of 0.772, which is
lower than the results of the current study. Based on above comparisons
and analysis, we concluded that the proposedmethod is a powerful tool
for the annotation of the types of Golgi-resident proteins.
0-gap 1-gap 2-gap 3-gap 4-gap 5-gap 6-gap
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Fig. 3. The maximum auROCs of 7 optimized dipeptide sets by ANOVA.
3.3. Prediction of Golgi proteins

Generally speaking, when one obtains a protein sequence, it must
judge whether it is a Golgi-resident protein before predicting the
Golgi protein type of this protein. Thus, a non-Golgi protein dataset
must be constructed. However, after filtering the uncertainty proteins
in Uniprot according to the step in dataset section, we still achieved a
large numbers of non-Golgi proteins (over 20,000 items). This can
result in extremely imbalance of the size between positive data and
negative data, which further cause learning bias in class identification
techniques. Therefore, for balancing the size of two classes of data, we
randomly selected 137 non-Golgi proteins who share the sequence
identities less than 25%. We then repeated the feature selection pro-
cession for finding the best feature set which can achieve the highest
accuracy. As a result, the maximum accuracy of 79.9% with MCC of
0.599 were achieved when 66 2-gap dipeptides (Fcutoff = 5.2) are
used. 77.4% Golgi proteins and 82.5% non-Golgi proteins can be cor-
rectly predicted. These results suggest that our method is efficient.
4. Conclusion

In this study, we developed a powerful method for the prediction of
types of Golgi-resident proteins by using ANOVA to filter g-gap dipep-
tide. Feature selection has widely used in pattern identification; how-
ever, the ANOVA was rarely used in protein bioinformatics, especially
in Golgi-resident protein prediction. By using a series of experiments,
we demonstrated the power of the method. Based on this method, we
built an on-line server, namely, subGolgi v2.0 which can be freely avail-
able from http://lin.uestc.edu.cn/server/subGolgi2. We hope that the
server will be useful to discriminate between cis-Golgi and trans-Golgi
proteins in the absence of experimental data and elucidate the biologi-
cal function of newly discovered Golgi-resident proteins.
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