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potential to become an elegant tool in identifying m6A site 
in A. thaliana.

Keywords  m6A · Ring structure · Hydrogen bond · 
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Introduction

Among the ~150 post-transcriptional modifications of 
RNA, N6-methyladenosine (m6A) is the most prevalent 
one and has been discovered from bacteria to Homo sapi-
ens (Cantara et  al. 2011). Recent studies have demon-
strated that m6A is a dynamic and reversible modification 
(Jia et al. 2011; Liu et al. 2014). m6A can be installed and 
erased by m6A methyltransferases and demethylases (Jia 
et al. 2011; Liu et al. 2014), respectively. It has been found 
that m6A impacts a variety of biological events, such as 
mRNA splicing and stability (Nilsen 2014), RNA localiza-
tion and degradation (Meyer and Jaffrey 2014), stem cell 
pluripotency (Chen et  al. 2015a), and cell differentiation 
and reprogramming (Geula et  al. 2015). Therefore, the 
detection of m6A is helpful for the revealing its biological 
functions.

Based on high-throughput experiments, m6A profiles 
are available for Saccharomyces cerevisiae (Schwartz et al. 
2013), H. sapiens (Dominissini et  al. 2012; Linder et  al. 
2015), Mus musculus (Dominissini et al. 2012), and Arabi-
dopsis thaliana (Luo et  al. 2014). Recently, Jaffrey et  al. 
provided the single nucleotide resolution profile of the 
m6A sites for human using the miCLIP technique (Linder 
et  al. 2015). However, since the high-throughput experi-
mental identifications of m6A sites rely on next-genera-
tion sequencing-based techniques, they are still unable to 
exactly point out which adenosine is methylated in most 
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species. Therefore, accurate and base-resolution methods 
are highly desirable to determine the exact m6A sites.

The experimental methods yield quite encouraging 
results and provide unprecedented opportunities to con-
struct computational m6A site predictors which are excel-
lent complements to experimental techniques. In the last 
2  years, a series of computational tools have been devel-
oped for S. cerevisiae (Chen et  al. 2015b, c), H. sapiens 
(Chen et  al. 2016b; Zhou et  al. 2016), and M. musculus 
(Chen et  al. 2016b; Zhou et  al. 2016), respectively. How-
ever, as far as we know, there is no computational tool 
available for identifying m6A sites in plant. Keeping this in 
mind, in the present study, a support vector machine-based 
method was proposed to identify m6A sites in A. thaliana.

Materials and methods

Dataset construction

Using m6A-targeted antibody coupled with high-through-
put sequencing, Luo and his colleagues obtained 7489 m6A 
peaks in Can-0 strain and 6094 m6A peaks in Hen-16 strain 
of A. thaliana (Luo et al. 2014). Among them, 4317 m6A 
peaks were detected in both Can-0 and Hen-16 strains 
and were called common m6A peaks. Since most of the 
m6A peaks contain the motif RRACH (where R stands for 
purine, A stands for m6A, and H stands for a non-guanine 
base) (Luo et al. 2014), we collected segments that have the 
RRACH at the center from the 4317 common m6A peak 
containing sequences.

To reduce the homology bias, sequences with more 
than 60  % sequence similarity were removed using the 
CD-HIT program (Fu et al. 2012). Thus, we obtained 394 
m6A site containing sequences and selected as positive 
samples. Preliminary trials indicated that when the length 
of the segments is 25 nt with the m6A in the center, the 
highest predictive results could be obtained. Accordingly, 
the positive samples are all with the length of 25 nucleo-
tides. The negative samples were collected by choosing the 
25-nt long sequences satisfying the rule that the adenosine 
in the center was not experimentally confirmed as m6A. 
It is easy to notice that the number of negative samples is 
dramatically larger than that of positive ones. To deal with 
the unbalanced numbers between positive and negative 
samples in model training, 394 sequences were randomly 
picked out to form the negative samples.

Representation of RNA sequences

Nucleotide chemical property and nucleotide composition 
have been successfully used to identify post-transcriptional 
RNA modifications (Chen et  al. 2016a, c). Thus, they 

were used to encode RNA sequences in the present work. 
Below is the brief elaboration on how to encode RNA 
sequences using nucleotide chemical property and nucleo-
tide composition.

RNA is made up of adenine (A), guanine (G), cytosine 
(C), and uracil (U). These bases have different chemical 
properties. In terms of ring structures, A and G have two 
rings, while C and U are pyrimidines that have one ring. 
When forming secondary structures, C and G form strong 
hydrogen bonds, whereas A and U form weak hydrogen 
bonds. In terms of chemical functionality, A and C can be 
classified into the amino group while G and U into the keto 
group (Chen et al. 2016a, c). Therefore, three coordinates 
(x, y, z) were used to represent the chemical properties of 
the four nucleotides and were assigned 1 or 0 values (Chen 
et al. 2015c). If the x coordinate stands for the ring struc-
ture, y for the hydrogen bond, and z for the chemical func-
tionality, nucleotide in RNA sequence can be encoded by 
(xi, y i, zi), where

Thus, nucleotides A, C, G, and U can be transferred to 
the coordinates (1, 1, 1), (0, 0, 1), (1, 0, 0), and (0, 1, 0), 
respectively.

To integrate the information of the sequence neighbor 
surrounding m6A, the density di of any nucleotide nj at 
position i in a sequence was defined as follows:

where l is the sequence length, |Ni| is the length of the ith 
prefix string {n1, n2, …, ni} in the sequence, and q ∈ {A, 
C, G, U}.

Therefore, the sequence with a length of l will be 
encoded by a (4 × l)-dimensional vector. For example, the 
sequence “AGCGUAAC” can be represented by {1, 1, 1, 
1, 1, 0, 0, 0.5, 0, 0, 1, 0.33, 1, 0, 0, 0.5, 0, 1, 0, 0.2, 1, 1, 1, 
0.33, 1, 1, 1, 0.43, 0, 0, 1, 0.25}. Accordingly, each 25-bp 
long sequence in the benchmark dataset can be represented 
by a 100 (4 × 25)-dimensional vector.

Support vector machine

As a smart machine learning algorithm, support vector 
machine (SVM) has been widely used to build models in 
computational genomics and proteomics (Chen et al. 2013, 
2014b; Lin et al. 2013; Cao et al. 2014a, b). Therefore, in 
the current study, the LibSVM package 3.18 was used to 

(1)

xi =

{

1 if si ∈ {A,G}

0 if si ∈ {C,U}
, yi =

{

1 if si ∈ {A,U}

0 if si ∈ {C,G}
,

zi =

{

1 if si ∈ {A,C}

0 if si ∈ {G,U}
.

(2)di =
1

|Ni|

l
∑

j=1

f (nj), f (nj) =

{

1 if nj = q

0 other cases
,
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perform the predictions. The popular radial basis function 
(RBF) was chosen as the kernel of SVM, where the regular-
ization parameter C and kernel parameter γ were optimized 
using grid search, and their actual values thus obtained for 
the current study were C = 0.5 and γ = 0.0078125.

Metrics for validation and evaluation

The performance of the proposed method was evaluated 
using sensitivity (Sn), specificity (Sp), accuracy (Acc) 
and Matthew’s correlation coefficient (MCC), which are 
expressed as

where TP represents the number of the correctly rec-
ognized m6A-containing sequences, TN represents the 
number of the correctly recognized non-m6A-containing 
sequences, FP represents the number of non-m6A-contain-
ing sequences recognized as m6A-containing sequences, 
and FN represents the number of m6A-containing 
sequences recognized as non-m6A-containing sequences, 
respectively.

Moreover, to objectively examine the performance of 
the proposed predictor, both the ROC (receiver operating 
characteristic) curve and the precision–recall curve were 
plotted. The former plots the true positive rate (sensitivity) 
against the false positive rate (specificity), and the latter 
plots precision (the fraction of TP in all predicted positives) 
against recall (sensitivity).

Results

Identification of m6A sites

As demonstrated by Eqs. 28–32 in a recent review (Chou 
2011), the jackknife test is deemed as the least arbitrary 
and most objective cross-validation method and has been 
increasingly adopted by researchers to examine the quality 
of various computational models (Chen et al. 2012, 2014a; 
Feng et al. 2014a, b). Therefore, the jackknife test was used 
to examine the performance of the proposed model. In the 

(3)Sn =
TP

TP+ FN
× 100%,

(4)Sp =
TN

TN+ FP
× 100%,

(5)Acc =
TP+ TN

TP+ FN+ TN+ FP
× 100%,

(6)

MCC =
TP× TN− FP× FN

√
(TP+ FN)× (TN+ FP)× (TP+ FP)× (TN+ FN)

,

jackknife test, the proposed method obtained an Acc of 
84.39 % with Sn of 68.78 % and Sp of 100 % for identify-
ing m6A sites, Table 1. Moreover, the ROC curve and preci-
sion–recall curve were plotted in Fig. 1. As shown in Fig. 1, 
the AUROC and AUPRC are 0.85 and 0.87, respectively, 
indicating the reliability of the proposed model in identify-
ing m6A sites in A. thaliana.

Cross‑strain validation

Both Can-0 and Hen-16 strain possess their own spe-
cific m6A sites that associated with gene activation (Luo 
et al. 2014). Since the proposed model was trained based 
on the common m6A sites of Can-0 and Hen-16 strains, 
it is interesting to see its performances on identifying the 
strain-specific m6A sites. To this end, we obtained 266 
Can-0-specific and 195 Hen-16-specific m6A containing 
sequences from Luo et  al.’s (2014) work, which did not 
overlap (1-nucleotide) any peak in any two replicates of 
the other strain. All these sequences are also 25-nt long 
with the m6A in the center and with the sequence similar-
ity less than 60 %.

The model was then applied to identify the Can-0 and 
Hen-16 specific m6A sites, respectively. We found that the 
proposed model could accurately identify 198 m6A sites 
from the 266 Can-0 specific m6A sites with the Acc of 
74.43 % and 144 m6A sites from the 195 Hen-16 specific 
m6A sites with the Acc of 73.84 %, respectively.

Comparison with other methods

To further testify its superiority, we compared the perfor-
mance of the proposed method with that of the other state-
of-the-art classifiers, i.e., Naïve Bayes, Random Forest and 
J48 Tree as implemented in WEKA (Frank et  al. 2004). 
The jackknife test results of different classifiers for identi-
fying m6A sites were reported in Table 1.

Although Sn of the proposed method is lower than those 
of Naïve Bayes, Random Forest and J48 Tree, its Sp, Acc, 
and MCC are all higher than those of Naïve Bayes, Ran-
dom Forest and J48 Tree, indicating that the proposed 
SVM-based model can be effectively used to identify m6A 
in A. thaliana.

Table 1   Comparison of different methods for identifying m6A by 
the jackknife test in Arabidopsis thaliana

Method Sn (%) Sp (%) Acc (%) MCC

Naïve Bayes 71.57 91.88 81.73 0.65

Random Forest 76.65 78.68 77.66 0.55

J48 74.62 70.30 72.46 0.45

SVM 68.78 100.00 84.39 0.72
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Webserver

For the convenience of scientific community, a freely 
accessible online webserver was established. The user 
guide on how to use it is given bellow.

Step 1. Open the webserver at http://lin.uestc.edu.cn/
server/M6ATH, and its top page will be shown as in Fig. 2.

Step 2. Either type or copy/paste the query RNA 
sequences into the input box at the center of Fig. 2.

Step 3. Click on the ‘Submit’ button to see the pre-
dicted result. For example, if use the query RNA sequences 
in the ‘Example’ window as the input, the outcomes are 
as follows: A at position 13 in the first and second query 
sequences are m6A; none of the A in the third and fourth 
query sequences is m6A. All these results are fully consist-
ent with the experimental observations.

Discussions

Benefitting from the high-throughput sequencing data, in 
the present work, we proposed a computational method to 
identify m6A sites in A. thaliana, in which RNA sequences 
were encoded by nucleotide chemical properties and 
nucleotide composition. In the jackknife test, the proposed 
method obtained an overall accuracy of 84.39 % for iden-
tifying m6A sites in A. thaliana. It is encouraging that 
the proposed method is also quite good in identifying the 
strain-specific m6A sites.

To further demonstrate its performance on the prob-
lem of identifying m6A sites in A. thaliana, comparisons 

were carried out between the proposed method and the 
other state-of-the-art classifiers. We found that our pro-
posed SVM-based model outperforms other classifiers 
for identifying m6A in A. thaliana. To enhance the value 
of the actual applications of the proposed model, a web-
server was established at http://lin.uestc.edu.cn/server/
M6ATH by which users can easily obtain their desired 
results.

It has not escaped our notice that the current method 
is also suitable for identifying m6A sites in other plants, 
once the experimental data that can be used to train the 
models are available. Therefore, it is anticipated that 

Fig. 1   Graphical illustration to show the performance of the proposed method for identifying m6A sites in A. thaliana. The performances are 
illustrated by means of the ROC curves (left) and precision–recall curves (right)

Fig. 2   Semi-screenshot for the top page of the webserver which is 
available at http://lin.uestc.edu.cn/server/M6ATH

http://lin.uestc.edu.cn/server/M6ATH
http://lin.uestc.edu.cn/server/M6ATH
http://lin.uestc.edu.cn/server/M6ATH
http://lin.uestc.edu.cn/server/M6ATH
http://lin.uestc.edu.cn/server/M6ATH
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our method will become a useful tool for identifying 
m6A and other post-transcriptional modifications in A. 
thaliana.
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