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Identification of immunoglobulins using Chou’s pseudo amino 

acid composition with feature selection technique 

Hua Tang,a,* Wei Chen  b,c and Hao Lin  c,* 

Immunoglobulin, also called antibody, is a group of cell surface proteins which are produced by the immune system in 

response to the presence of a foreign substance (called antigen). They play key roles in many medical, diagnostic and 

biotechnological applications. Correct identification of the immunoglobulins is very crucial to the comprehension of 

humoral immune function. With the avalanche of protein sequences generated in postgenomic age, it is highly desired to 

develop computational methods to timely identify immunoglobulins. In view of this, we designed a predictor called 

“IGPred” by formulating protein sequences with the pseudo amino acid composition into which nine physiochemical 

properties of amino acids were incorporated. Jackknife cross-validated results showed that 96.3% immunoglobulins and 

97.5% non-immunoglobulins can be correctly predicted, indicating that IGPred holds very high potential to become a useful 

tool for antibody analysis. For the convenience of most experimental scientists, a web-server for IGPred was established at 

http://lin.uestc.edu.cn/server/IGPred. We believe that the web-server will become a powerful tool to study immunoglobulins 

and to guide the related experimental validations. 

1. Introduction 

Immunoglobulin, called antibody, is a group of cell surface 

proteins which are involved in the recognition, binding, or adhesion 

processes of cells. They play crucial roles in the detection of the 

potentially harmful molecules 1. When an alien substance enters the 

body, the immune system is capable of recognizing it as invader and 

subsequently activates B lymphocytes to secrete the immunoglobulin 

for attacking antigens. For example, when preventing a toxin from 

expression, immunoglobulins will neutralize the poison simply by 

changing its chemical composition. Stabilin-2 can bind to both 

Gram-positive and Gram-negative bacteria for defending against 

bacterial infection 2. Some special immunoglobulins play an 

important role in the regulation of diseases. For instance, Kim-1 

helps T-helper cell development and regulates asthma and allergic 

diseases. It is the key factor in kidney injury and repair. Kim-1 also 

acts as a receptor for hepatitis A virus, Dengue virus, ebolavirus and 

marburg virus by binding exposed phosphatidyl-serine at the surface 

of virion membrane 3-5. Due to their special biological activity, 

immunoglobulins have been applied in many medical, diagnostic 

and biotechnological fields 6. Thus, it is necessary to perform a deep 

study on immunoglobulins for understanding immune system and 

developing antibacterial-drug. However, the currently avalanche data 

do not allow us to investigate each protein because of costly and 

time-consuming biochemical experiments. Thus, development of 

computational method is a popular strategy to save experiment 

expenditure. 

In fact, the three dimension structure prediction of 

immunoglobulin has attracted several scientists because it is the 

fundament of theoretical study on the interaction between ligand and 

receptor. Marcatili et al. have developed a method to predict the 3D 

structure of antibodies 7, 8. The method builds a structural model of 

an antibody by only a few minutes (∼10 min on average). A very 

satisfactory accuracy can be achieved. Based on the strategy, they 

constructed a web server called Pigs for the automatic modelling of 

immunoglobulin variable domains based on the canonical structure 

method. It allows users to choose templates (for the frameworks and 

the loops) and modelling strategies in an automatic or manual 

fashion. The prediction results on the target antibody can be freely 

downloaded or displayed on-line. There is no limitation on the 

number of submitted sequences. Thus, it is user-friendly and 

flexible. Klausen et al. developed another webserver called LYRA 

for lymphocyte receptor structural modelling 9. For their benchmark 

dataset, the average RMSD accuracies of 1.29 and 1.48 Å were 

obtained for B- and T-cell receptors, respectively. 

These tools do provide convenience to most of scholars. 

However, the first step to reveal the biological function of 

immunoglobulin is to correctly identify them. To the best of our 

knowledge, there is no such tool which can accurately judge whether 

a new protein is immunoglobulin or not. With the appearance of 

more and more protein data, it is urgent to develop a predictor to 

recognize immunoglobulins. In the past two decade, lots of 

predictors for protein structure and function have been developed 

based on machine learning methods and protein sequence 

information 10-30. Encouraging results obtained by these references 

Page 1 of 7 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 1
1 

Fe
br

ua
ry

 2
01

6.
 D

ow
nl

oa
de

d 
by

 L
A

 T
R

O
B

E
 U

N
IV

E
R

SI
T

Y
 o

n 
17

/0
2/

20
16

 0
4:

59
:2

4.
 

View Article Online
DOI: 10.1039/C5MB00883B

http://dx.doi.org/10.1039/c5mb00883b


ARTICLE Journal Name 

2 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

stimulate us to construct a powerful tool to discriminate 

immunoglobulins from non-immunoglobulins. 

Thus, the present study was devoted to develop a computational 

method to predict immunoglobulins and build a friendly web-server 

for convenience. This work includes the following four sections: the 

benchmark dataset construction, description on immunoglobulin 

sequence, discriminated algorithm and predicted results. 

2. Material and methods 

2.1. Benchmark datasets 

A high quality benchmark dataset can guarantee the reliability 

and accuracy of predictive model. The immunoglobulin superfamily 

information derives from the annotation in the Universal Protein 

Resource (Uniprot) 31. The sequences of immunoglobulins were also 

extracted from the UniProt. The immunoglobulins usually locate in 

cell membrane or outside the cell, thus, to obtain a reliable contrast, 

we just selected the negative samples from the two subcellular 

locations: cell membrane and outside the cell. The amino acid 

sequences of negative samples were also downloaded from the 

Uniprot. To guarantee the quality of benchmark dataset, we 

performed the following steps to select proteins. At first, we 

excluded the protein sequence if it contains ambiguous residues 

(such as ‘‘X’’, ‘‘B’’ and ‘‘Z’’). Secondly, if a sequence is the 

fragment of other proteins, the sequence was excluded. Thirdly, we 

only chose the proteins from human, mouse and rat. Fourthly, to 

avoid any similarity bias which will result in the overestimate of 

predicted results, we used the CD-HIT program 32 to remove the 

highly similar sequences by setting the cutoff of sequence identity as 

60%. In fact, if using 25% sequence identity as cutoff, the dataset 

will be more strict and objective. However, the current data do not 

allow us to do so; otherwise, the number of proteins would be too 

few to have statistical significance. After such a screening 

procedure, we finally obtained 228 samples for the benchmark 

dataset S as formulated as follows: S = S�� ∪ S���	��          
 (1) 

where the subset S��  contains 109 immunoglobulin samples, S���	�� contains 119 non-immunoglobulin samples. The symbol ∪ 

represents the union in the set theory. The codes of 228 sequences 

can be freely downloaded from 

http://lin.uestc.edu.cn/server/IGPred/data. 

To further investigate the prediction capability of the 

proposed model, we collected a test dataset from Uniprot. 

These proteins were obtained according to the same step of the 

training data construction. If a protein overlaps with the sample 

in training set, the protein will be excluded. Thus, the test data 

is independent from the train data. As a result, total of 20 

immunoglobulins and 20 non-immunoglobulins were achieved 

and can be freely checked and downloaded from 

http://lin.uestc.edu.cn/server/IGPred/data. 

2.2. The representation of peptide samples 

How to formulate protein sequences with an effective 

mathematical expression is a crucial step in immunoglobulin 

prediction. A straightforward way is to use entire amino acid 

sequence of protein as formulated by 

P=R1R2R3R4…RL                                                 

(2) 

where R1, R2 and RL denote the 1st, 2nd and Lth residue of the protein 

sample P. Such formulation is easily utilized by various sequence 

similarity search tools, such as BLAST and FASTA, to perform 

statistical prediction. The results are always good for the query 

sequences which have high similar sequences in searching dataset. 

Thus, the similar-based method is straightforward and intuitive. 

However, it is failed to work when the similar sequences of the 

query sequences are not found in the training dataset. 

Thus, using discrete vectors to represent protein samples have 

been proposed in protein classification. The pseudo amino acid 

composition (PseAAC) is a widely used method to represent protein 

sequences because it can not only include amino acid composition, 

but also contain the correlation of physicochemical properties 

between two residues 11, 33-46. Based on the concept of PseAAC, we 

made an improved revision on PseAAC by replacing amino acid 

composition with g-gap dipeptide composition. Accordingly, each 

protein in our benchmark dataset can be defined by a 400+nλ 

dimension vector as formulated by: 
 = [� ⋯��������� ⋯�������]�                      

(3) 

here 

	�� = ���				�1 ≤ � ≤ 400 																							!�			�400 + 1 ≤ � ≤ 400 + #$           (4) 

In Eq. (4), the ��  is the normalized frequency of the g-gap 

dipeptides in protein P, and can be expressed as: �� = �%∑ �%%               (5) 

where #�  denotes the number of the u-th g-gap dipeptide in the 

protein P. The !' in Eq.(4) is the j-tier sequence correlation factor 

computed by the following formula: 

 

()
))
))
*
))
))
)+! = ,	∑ -.,.�,	.0 				
!1 = ,	∑ -.,.�1,	.0 				⋮!� = ,	∑ -.,.��,	.0 				
!�� = ,	1∑ -.,.�1,	1.0!��1 = ,	1∑ -.,.�11,	1.0⋮!��� = ,	1∑ -.,.�1�,	.0⋮!�� = ,	�∑ -.,.���,	�.0

				�$ < 4                           (6) 

where -.,.���  is the correlation function and can be given by  -.,.��� = ℎ��6. · ℎ��6.��                                      (7) 

where ℎ��6.  is the n-th kind of the physicochemical values of the 

amino acid 6.. The values should be converted to standard type by: ℎ��6. = 89:�;< 	〈89:�;< 〉?@〈89:�;< 〉                                          (8) 

where ℎ���6.  is the original physicochemical values of the k-th 

amino acid. 

According to Eqs (3), each protein can be expressed by 400+nλ 

features. To optimize feature subset, based on the analysis of 

variance (ANOVA) 13, 47, we used a feature selection technique to 

rank features defined as: 
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A�� = ∑ BCD∑ E%�C,F GCFHIGC 	∑ ∑ E%�C,F GCFHIJCHI∑ GCJCHI KJJCHI
∑ ∑ DL%�M,' 	∑ E%�C,F GCFHIGC KJGCFHIJCHI �BI�BJ	1 N

     (9) 

where ���O, P  denotes the frequency of the u-th features of the j-th 

sample in the i-th group; mi denotes the number of samples in the i-

th group (here m1=109, m2=119). It is obviously that the larger the 

F(u) value, the better discriminative capability the u-th feature has. 

2.3. Support vector machine 

Several methods, such as, fisher discrimination (FD) 14, neural 

network (NN) 48, ensemble learning 49-53 and k-nearest neighbors 

(KNN) 20 have been applied in protein classification. In this study, 

we selected support vector machine (SVM) to perform 

discrimination as its excellent learning ability, especially for small 

samples. The basic idea of SVM is to transform the input vector into 

a high-dimension Hilbert space and to seek a separating hyperplane 

in this space. The radial basis function (RBF) defined as QRSTUUUV, SWUUUVX =
Y�S�−[\STUUUV − SWUUUV\1  were used in the current study because it is 

suitable for non-linear classification. We used a grid search method 

with 5-fold cross-validation test to obtain the best values for the 

regularization parameter C and kernel parameter γ. To implement 

SVM, the soft package LibSVM (version 2.88) 

(https://www.csie.ntu.edu.tw/~cjlin/ libsvm/) was used. 

2.4. Performance evaluation 

The following four indexes called sensitivity (Sn), specificity 
(Sp), and overall accuracy (Acc) were introduced to measure the 
prediction quality 19, 47, 54. ]# = �^�^�_` 																										0 ≤ ]# ≤ 1       (10) ]S = �`�`�_^ 																										0 ≤ ]S ≤ 1       (11) 

 abb = �^��`�^��`�^_�_` 											0 ≤ abb ≤ 1       (12) 

where TP, TN, FP and FN are the true positive, true negative, false 

positive and false negative, respectively. 

We also plotted the receiver operating characteristic (ROC) 

curves to show the predictive capability of our method across 

the entire range of SVM decision values. The ROC curve also 

presents the model behaviour of true positive rate (sensitivity) 

against false positive rate (1-specificity) in a visual way. The 

area under the ROC (auROC) was calculated to quantitatively 

and objectively measure the performance of proposed method. 

A perfect classifier gives AUC = 1, the random performance 

gives AUC = 0.5. 

3. Results and Discussion 

3.1. Physicochemical properties 

The physicochemical properties of amino acids do play 

important roles in protein structure and function. In this work, six 

widely used properties that are hydrophobicity, hydrophilicity, side 

chain mass, pK of the α-COOH group, pK of the α-NH3
+ group and 

pI at 25oC were utilized in the Eqs. (4-8). We also introduced three 

new characteristics of amino acids called rigidity, flexibility and 

irreplaceability. 

 

Table 1. The nine physicochemical properties used in the current study 

Amino 
acids 

Hydrophobicity Hydrophilicity Mass pK1 pK2 pI Rigidity Flexibility Irreplaceability 

A 0.62 -0.5 15 2.35 9.87 6.11 -1.338 -3.102 0.52 

C 0.29 -1 47 1.71 10.78 5.02 -1.511 0.957 1.12 

D -0.9 3 59 1.88 9.6 2.98 -0.204 0.424 0.77 

E -0.74 3 73 2.19 9.67 3.08 -0.365 2.009 0.76 

F 1.19 -2.5 91 2.58 9.24 5.91 2.877 -0.466 0.86 

G 0.48 0 1 2.34 9.6 6.06 -1.097 -2.746 0.56 

H -0.4 -0.5 82 1.78 8.97 7.64 2.269 -0.223 0.94 

I 1.38 -1.8 57 2.32 9.76 6.04 -1.741 0.424 0.65 

K -1.5 3 73 2.2 8.9 9.47 -1.822 3.950 0.81 

L 1.06 -1.8 57 2.36 9.6 6.04 -1.741 0.424 0.58 

M 0.64 -1.3 75 2.28 9.21 5.74 -1.741 2.484 1.25 

N -0.78 0.2 58 2.18 9.09 10.76 -0.204 0.424 0.79 

P 0.12 0 42 1.99 10.6 6.3 1.979 -2.404 0.61 

Q -0.85 0.2 72 2.17 9.13 5.65 -0.365 2.009 0.86 

R -2.53 3 101 2.18 9.09 10.76 1.169 3.060 0.60 

S -0.18 0.3 31 2.21 9.15 5.68 -1.511 0.957 0.64 

T -0.05 -0.4 45 2.15 9.12 5.6 -1.641 -1.339 0.56 

V 1.08 -1.5 43 2.29 9.74 6.02 -1.641 -1.339 0.54 

W 0.81 -3.4 130 2.38 9.39 5.88 5.913 -1.000 1.82 

Y 0.26 -2.3 107 2.2 9.11 5.63 2.714 -0.672 0.98 

 

The flexibility and rigidity of amino acid side chains may 

comprise important information for the understanding of protein 

structure and function 55. The flexibility and rigidity scales were 

generated by descriptor projection to vectors using principle 
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component analysis. In the evolution, some residues are easily 

replaceable, but others are difficult. Thus, averaged mutational 

deteriorations (AMD) of amino acids can be used to describe their 

irreplaceability 56. It shows that the rarer is substitution for a 

residue, the higher is its value of AMD. The irreplaceability is a 

response to mutational deterioration in the course of evolution of 

life. The values of nine physicochemical properties for 20 amino 

acids were all listed in Table 1. 

3.2. Predictive accuracy 

Based on above description that nine physicochemical 

properties were used, we have 400+9λ features, namely n=9 in 

Eqs.(3-6). Subsequently, we must determine the sequence 

correlation factor λ. In order to include long-range correlated 

information as more as possible, meanwhile, without wasting 

computational source, we set the λ=10. Accordingly, for each g-gap 

dipeptide, each protein in benchmark dataset is represented by a 

490 dimension vector. 

For the purpose of obtaining the best predictive performance, 

we should pick out the optimal features which can produce the 

maximum Acc. If we investigated all the combinations of features, 

the best feature subset must be obtained. However, the number of 

all possible combinations for 490 features is so huge that it is 

beyond computational capability for most computers. Thus, it is 

impossible to examine the performance of all feature subsets. To 

save the computational time, the F score defined in Eq.(9) was used 

to perform feature selection. We initially ranked all features 

according to their F scores from large to small. Subsequently, the 

Acc of the first feature with the largest F(u) was investigated by 

using SVM. Furthermore, we examined the performance of a new 

feature subset which was produced by adding the feature with the 

second highest F value into the former feature subset. This process 

was repeated from the large to the small F(u) value until 490 

combinations were examined. The optimal feature subset can be 

achieved when the best predictive accuracy was observed. On the 

basis of the feature selection, the high-dimensional data will be 

projected into a low-dimensional space. The optimal feature subset 

was used to build the final predictive model. 
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(105, 96.9)

Fig. 1 A plot to show the feature selection results. When the top 

105 feature were used to perform prediction, the overall success 

rate reached its peak of 96.9%. 

 

We varied the parameter g from 0 to 8. Then total of 4420 

(490×9) feature subsets should be investigated. As a result, 9 

curves were plotted in a 2D Cartesian coordinate system with the 

number of features as its abscissa and the Acc as its ordinate 

(Figure 1). For statistical predictive test, independent dataset test, 

n-fold cross-validation test and jackknife test are three widely used 

strategies 57-62. Jackknife test can yield unique result for a given 

benchmark dataset. Thus, it has been widely used to evaluate the 

performance of the proposed methods in practical application. For 

time saving, we used 5-fold cross-validation in feature selection. 

Once the best feature subset was found, the jackknife test was used 

to measure the performance of the feature subset again. As shown 

in Fig.1, the maximum Acc is 96.9% when the top ranked 105 

features with g=1 were used. The Sn and Sp are 96.3% and 97.5%, 

respectively in jackknife test. The false positive rate is only 2.5%. 

Such high accuracy suggested that our method can correctly 

identify immunoglobulin. 

To describe the performance of our model with 105 features 

across the entire range of SVM decision values, the ROC curve 

were also provided in Figure 2. We noticed that the curve is close 

left and top coordinate axis, demonstrating that the model is very 

suitable for classification. The auROC is 0.994 in jackknife cross-

validation. 
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Fig. 2 The ROC curve for the model with 105 optimal 1-gap 

dipeptides in jackknife cross-validation. The diagonal dot line 

denotes a random guess with the auROC of 0.5. 

 

We further investigated the performances of three state of-the-

art classifiers: Naïve Bayes, BayesNet and RBFNetwork on the 

same benchmark dataset using the same features. The predicted 

results are all recorded in Table 1. Comparison in Table 1 

demonstrates that the SVM is the best one among all algorithms for 

immunoglobulin predictions. 

 

Table 1 Comparing the performance of different algorithms 
Algorithm Sn(%) Sp(%) Acc(%) auROC 
SVM 96.3 97.5 96.9 0.994 
Naïve Bayes 89.9 90.8 90.4 0.958 
BayesNet 92.7 92.4 92.5 0.974 
RBFNetwork 88.1 89.9 89.0 0.887 
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3.3. Web-server construction 

According to above calculation, a user-friendly web-server 

called IGPred was constructed as shown in Figure 3. Users may 

browse the web server at http://lin.uestc.edu.cn/server/IGPred. The 

Read Me button provides a brief introduction about the predictor 

and the caveat when using it. The Data button lists a link for 

downloading the benchmark datasets. The Citation button gives the 

relevant paper of IGPred. The Example button provides example 

sequences in FASTA format. Users may type or copy/paste the 

query peptide sequences with FASTA format into the input box at 

the centre of main page. After submitting protein sequences, results 

will be shown in a new interface. 

 
Fig. 3 A semi-screenshot to show the top page of the IGPred 

webserver. Its website address is http://lin.uestc.edu.cn/server/ 

IGPred. 

3.4. Further discussion 

To examine the prediction capability of the web-server on 

independent data, we collected 20 immunoglobulins and 20 non-

immunoglobulins from Uniprot, which are independent from train 

data. By submitting these data into the web-server, we noticed that 

all proteins can be correctly recognized, suggesting that the server 

is powerful and there is a low false positive rate of IGPred for the 

external validation sets. Of course, the IGPred was constructed 

based on the proteins from cell membrane or outside the cell. Thus, 

the model just focuses on the proteins from the two locations. 

Over-fitting is an inevitable problem in machine learning. 

Previous studies 12, 63, 64 have shown that protein sequence 

descriptor-based machine learning models often have high risk of 

over-fitting. In this study, to reduce the risk of over-fitting, we used 

cross-validation and independent data to evaluate the performance 

of the proposed model. High accuracies demonstrate that the model 

is reasonable. 

According to reference 65, the irrelevant, redundant information 

and inter-correlation of different features can also generate the risk 

of over-fitting, thus, we used a feature selection technique rank the 

original protein sequence features. The original high dimensional 

features of 490 vectors were reduced to 105 vectors. The higher 

predictive performance was yielded in jackknife cross validation. 

Low dimension feature can also contribute to avoid the over-fitting. 

Results showed that the reasonable feature selection technique can 

improve the predictive accuracies of the predictive model in the 

cross-validation. 

4. Conclusion 

Immunoglobulin is the most important component in 

immune system. The knowledge for immunoglobulin is 

conductive to the development of anti-disease drugs. Thus, we 

performed a theoretical work to discriminate immunoglobulins 

from non-immunoglobulin. A very high accuracy model was 

obtained. Results demonstrate that the proposed method can 

efficiently pick out informative features and improve 

predictive performance. Based on the optimal model, an 

online predictor IGPred was established for identifying 

immunoglobulins. We are sure that this predictor will become 

a useful tool for immunoglobulin analysis and further 

experimental research. Moreover, the method proposed in this 

study can be generalized to the prediction of other proteomics. 
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