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1. Introduction

N6-methyladenosine (m6A) is the most abundant post-
transcriptional modification and has been found in the
three domains of life (Cantara et al., 2011). m6A plays
fundamental regulatory roles in a series of biological
process, such as protein translation and localization
(Meyer & Jaffrey, 2014), mRNA splicing and stability
(Nilsen, 2014), and stem cell pluripotency (Chen, Hao,
et al., 2015). Therefore, accurately identifying m6A site
in RNA will help to expand our understanding of its po-
tential roles.

Recently, using high-throughput sequencing tech-
niques, m6A data were available for Saccharomyces
cerevisiae (Schwartz et al., 2013), Homo sapiens (H.
sapiens), and Mus musculus (M. musculus) (Dominissini
et al., 2012). Since these methods are costly and time
consuming in performing genome-wide analysis, with
the increasing number of sequenced genomes, it is nec-
essary to develop computational methods for timely
identifying m6A sites. However, to our best knowledge,
the existing computational tools for the detection of
m6A sites are only applicable for S. cerevisiae (Chen,
Feng, et al., 2015; Chen, Tran, et al., 2015). Therefore,
there is an urgent need to develop new automated
methods for m6A site identification.

Based on the high-resolution experimental data of
H. sapiens and M. musculus, in the present study, a sup-
port vector machine (SVM)-based model was proposed
to identify m6A sites by encoding RNA sequence using
nucleotide chemical property and frequency. Results
from the jackknife test show that the proposed model
could accurately identify m6A sites in H. sapiens and
M. musculus. A web server for the proposed model,
called MethyRNA is provided, which is freely available
at http://lin.uestc.edu.cn/server/methyrna.

2. Materials and methods

2.1. Data-set

Using MeRIP-Seq and m6A-seq, m6A sites have been
identified in S. cerevisiae, H. sapiens, and M. musculus
(Dominissini et al., 2012; Schwartz et al., 2013). These
experimentally annotated m6A sites have been checked
and deposited in the RMBase (Sun et al., 2015). There-
fore, from RMBase, we obtained 94,895 and 28,002 m6A
site containing sequences in H. sapiens and M. musculus,
respectively. All of these sequences are 41-nt long with
the m6A site in the center. To overcome redundancy and
reduce the homology bias, sequences with more than 60%
sequence similarity were removed by using the CD-HIT
program (Fu, Niu, Zhu, Wu, & Li, 2012). After such a
screening procedure, we obtained 1130 and 725 m6A site
containing sequences and deemed them as the positive
samples for H. sapiens and M. musculus, respectively.

Considering the m6A site in H. sapiens and M. mus-
culus harboring the consensus motif RRACU (Dominis-
sini et al., 2012), the negative samples were obtained by
choosing adenines from the 41-nt long segments which
are centered around the RRACU consensus motif in both
H. sapiens and M. musculus, respectively. By doing so,
we harvested a great number of negative samples. There-
fore, the size of negative data-set is dramatically greater
than that of positive data-set. In machine-learning prob-
lems, imbalanced data-sets can affect the accuracy of
learning models. To balance out the numbers between
positive and negative samples in model training, 1130
and 725 adenines containing sequences were randomly
picked out to form the negative samples for H. sapiens
and M. musculus, respectively. These negative samples
were also 41-nt long and with the sequence similarity
less than 60%. Finally, we obtained two benchmark data-
sets as formulated by
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Sk ¼ S
þ
k [ S

�
k ; k ¼ 1 forH : sapiens

2 forM :musculus

�
(1)

where the positive data-set Sþ1 contains 1130 true m6A
site containing sequences, while the negative data-set S�1
contains 1130 false m6A site containing sequences; S

þ
2

contains 725 true m6A site containing sequences, while
the negative data-set S�2 contains 725 false m6A site con-
taining sequences; and the symbol [ means the union in
the set theory. All of the positive and negative samples
in the benchmark data-set are available at http://lin.uestc.
edu.cn/server/Methy/data.

2.2. Support vector machine

SVM is a machine learning algorithm and has been suc-
cessfully used in the realm of bioinformatics (Chen,
Feng, Lin, & Chou, 2013; Chen, Feng, Deng, Lin, &
Chou, 2014b; Lin, Deng, Ding, Chen, & Chou, 2014;
Liu, Fang, Liu, Wang, & Chou, 2016; Liu et al., 2014;
Lin et al., 2015; Liu et al., 2015; Liu, Fang, Long, Lan,
& Chou, 2016; Zou et al., 2015). The basic idea of SVM
is to transform the input data into a high dimensional fea-
ture space and then determine the optimal separating
hyperplane. In the current study, the LibSVM package
3.18 (Chang & Lin, 2011) was used to implement SVM,
which can be freely downloaded from http://www.csie.
ntu.edu.tw/~cjlin/libsvm/. Because of its effectiveness
and speed in training process, the radial basis kernel func-
tion was used to obtain the best classification hyperplane
in the current study. In the SVM operation engine, the
grid search method was applied to optimize the regular-
ization parameter C and kernel parameter γ using a grid
search approach in the range 2�5 �C� 215 with step of 2
and 2�15 � c� 2�5 with step of 2−1, respectively.

2.3. Chemical property

There are four kinds of nucleotides found in RNA,
namely, adenine (A), guanine (G), cytosine (C), and ura-
cil (U). Since each nucleotide has different chemical
structures and chemical binding, they can be classified
into three different groups in terms of the chemical prop-
erties (Golam Bari, Rokeya Reaz, & Jeong, 2014). Ade-
nine and guanine have two rings, while cytosine and
uracil have only one ring. When forming secondary struc-
tures, guanine and cytosine have strong hydrogen bonds,
whereas adenine and uracil have weak hydrogen bonds.
In terms of chemical functionality, adenine and cytosine
can be classified into the same group called amino group,
while guanine and uracil into the keto group. Hence, each
nucleotide si = (xi, yi, zi) in the sequence can be encoded
by the following formula (Golam Bari et al., 2014).

xi ¼
1 if si 2 fA,Gg
0 if si 2 fC,Ug

�

yi ¼
1 if si 2 fA,Cg
0 if si 2 fG,Ug

�

zi ¼
1 if si 2 fA,Ug
0 if si 2 fC,Gg

�
(2)

Thus, A can be represented by coordinates (1, 1, 1), C
can be represented by coordinates (0, 1, 0), G can be
represented by coordinates (1, 0, 0), and U can be repre-
sented by coordinates (0, 0, 1).

2.4. Nucleotide frequency

In order to include the nucleotide frequency and nucleo-
tide distribution around m6A site, the density di of any
nucleotide nj at position i in RNA sequence was defined
by the following formula.

di ¼ 1

jNij
Xl

j¼1

f nj
� �

; f ðnjÞ ¼ 1 if nj ¼ q
0 other cases

�
(3)

where l is the sequence length, |Ni| is the length of the
i-th prefix string {n1, n2, …, ni} in the sequence, q∈{A,
C, G, U}. Suppose an example sequence ‘GUACCU-
GAUG’. The density of ‘A’ is .33 (1/3), .25 (2/8) at
positions 3 and 8, respectively. The density of ‘C’ is .25
(1/4) and .4 (2/5) at positions 4 and 5, respectively. The
density of ‘G’ is 1 (1/1), .29 (2/7), and .30 (3/10) at
positions 1, 7, and 10, respectively. The density of ‘U’ is
.5 (1/2), .33 (2/6), and .33 (3/9) at positions 2, 6, and 9,
respectively.

By integrating both the nucleotide chemical property
and accumulated nucleotide information, the sample
sequence ‘GUACCUGAUG’ can be encoded by the
following vector {(1, 0, 0,1), (0, 0, 1, .5), (1, 1, 1, .33),
(0, 1, 0, .25), (0, 1, 0,.4), (0, 0, 1, .33), (1, 0, 0, .29),
(1, 1, 1, .25), (0, 0, 1, .33), (1, 0, 0, .30)}. Both the
chemical property and the long-range sequence-order
information were incorporated in the vector.

2.5. Performance evaluation

As done in previous works (Chen, Lin, Feng, & Wang,
2014c; Chen, Feng, et al., 2015; Chen, Tran, et al.,
2015; Chen, Wang, & Liu, 2016; Lin, Chen, & Ding,
2013a; Lin, Chen, Yuan, Li, & Ding, 2013b; Wei et al.,
2014), the performance of MethyRNA was also evaluated
by using the following three metrics, namely sensitivity
(Sn), specificity (Sp), and Accuracy (Acc), which are
expressed as
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Sn ¼ TP

TPþ FN
� 100%

Sp ¼ TN

TNþ FP
� 100%

Acc ¼ TPþ TN

TPþ FNþ TNþ FP
� 100%

8>>>>><
>>>>>:

(4)

where TP, TN, FP, and FN represent true positive, true
negative, false positive, and false negative, respectively.

3. Results and discussions

3.1. Cross-validation

Since the jackknife test is deemed as the least arbitrary
and most objective cross-validation methods (Chou,
2011), it has been widely recognized and increasingly
adopted by investigators to examine the quality of vari-
ous predictors (Chen, Feng, Lin, & Chou, 2014a; Feng,
Chen, Lin, & Chou, 2013; Feng, Chen, & Lin, 2014;
Feng, Lin, Chen, & Zuo, 2014; Guo et al., 2014; Liu,
Fang, Chen, Liu, & Wang, 2015; Mohabatkar, Beigi,
Abdolahi, & Mohsenzadeh, 2013). Hence, the jackknife
test was used to examine the performance of the pro-
posed model. In the jackknife test, each sample in the
training data-set is in turn singled out as an independent
test sample and all the properties are calculated without
including the one being identified.

Preliminary trials indicated that when the length of
the sequences in the benchmark data-set is 41 bp with
the m6A in the center, the corresponding predictive
results were most promising. Therefore, each sample in
the benchmark data-set was encoded by a 164 (4 × 41)-
dimensional vector (see Section 2) and was used as the
input vector of SVM. In the jackknife test, the proposed
model accurately identified the m6A sites in H. sapiens
and M. musculus with the accuracies of 90.38% and
88.39%, respectively (Table 1).

3.2. Comparison with other methods

To further demonstrate the power of the proposed
method, we also compared its predictive accuracies with
that of iMethyl-RNA (Chen, Feng, et al., 2015). Accord-
ingly, we encoded the sequences in the benchmark
data-set according to the rules of iMethyl-RNA and car-
ried out the jackknife test on the benchmark data-set
used in the current work. The predictive results, namely,

sensitivity, specificity, and accuracy were also reported in
Table 1, from which we found that the accuracies
obtained by iMethyl-RNA are approximately 23% lower
than our proposed method for identifying m6A sites in
H. sapiens and M. musculus. These results indicate that
the model proposed in this work is quite promising and
may become a useful tool in identifying m6A sites.

3.3. Web server and guide for users

For the convenience of most experimental scientists, a
publicly accessible web server for MethyRNA has been
established. Moreover, a step-by-step guide on how to
use it to get the desired results is given below.

Step 1. Open the web server at http://lin.uestc.edu.cn/
server/methyrna and you will see the top page of the
MethyRNA predictor on your computer screen, as shown
in Figure 1. Click on the Read Me button to see a brief
introduction about the predictor and the caveat when
using it.

Step 2. By clicking the open circle, the organism
concerned will be selected. Either type or copy/paste the
query RNA sequences into the input box at the center of
Figure 1. The input sequence should be in FASTA
format. Examples of RNA sequences can be seen by
clicking the Example button right above the input box.

Step 3. Click on the Submit button to see the pre-
dicted result. For example, if you use the query RNA
sequences in the Example window as the input, the out-
comes for the 1st and 2nd are as following: The A at
position 21 in the 1st query sequence is methylated; The
A at position 21 in the 2nd query sequence is unmethy-
lated. All these results are fully consistent with the exper-
imental observations. To get the anticipated prediction
accuracy, the species button consistent with the source of
query sequences should always be checked: if the query
sequences are from H. sapiens, the ‘H. sapiens’ button is
checked; if from M. musculus, the ‘M. musculus’ button
is checked.

Table 1. Comparison of MethyRNA with the other method in
identifying m6A sites.

Method Species Sn (%) Sp (%) Acc (%)

iMethyl-RNA H. sapiens 57.47 76.92 67.19
M. musculus 62.80 66.25 64.53

Current method H. sapiens 81.68 99.11 90.38
M. musculus 77.79 100.00 88.39

Figure 1. A semi-screenshot for the top page of the
MethyRNA web server, which is available at http://lin.uestc.
edu.cn/server/methyrna.
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Step 4. Click on the Data button to download the
data-sets used to train and test the model.

Step 5. Click on the Citation button to find the rele-
vant paper that document the detailed development and
algorithm of MethyRNA.

Note: While our paper was in proof, we were alerted
to a study by Yuan Zhou and colleagues reporting simi-
lar researches on identifying m6A sites (Zhou, Zeng, Li,
Zhang, & Cui, 2016).
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