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Abstract 
Motivation: Long non-coding RNAs (lncRNAs) are a class of RNA molecules with more than 200 

nucleotides. They have important functions in cell development and metabolism, such as genetic 

markers, genome rearrangements, chromatin modifications, cell cycle regulation, transcription and 

translation. Their functions are generally closely related to their localization in the cell. Therefore, 

knowledge about their subcellular locations can provide very useful clues or preliminary insight into 

their biological functions. Although biochemical experiments could determine the localization of 

lncRNAs in a cell, they are both time-consuming and expensive. Therefore, it is highly desirable to 

develop bioinformatics tools for fast and effective identification of their subcellular locations. 

Results: We developed a sequence-based bioinformatics tool called “iLoc-lncRNA” to predict the 

subcellular locations of LncRNAs by incorporating the 8-tuple nucleotide features into the general 

PseKNC (Pseudo K-tuple Nucleotide Composition) via the binomial distribution approach. Rigorous 

jackknife tests have shown that the overall accuracy achieved by the new predictor on a stringent 

benchmark dataset is 86.72%, which is over 20% higher than that by the existing state-of-the-art pre-

dictor evaluated on the same tests. 

Availability: A user-friendly webserver has been established at http://lin-group.cn/server/iLoc-

LncRNA, by which users can easily obtain their desired results. 

Contact: W Chen: chenweiimu@gmail.com, KC Chou: kcchou@gordonlifescience.org, or H Lin: 

hlin@uestc.edu.cn 

Supplementary information: Supplementary data are available at Bioinformatics online. 

 

1 Introduction  

The basic unit of life is a cell. It contains many biomolecules including 

proteins, RNA, and DNA. To really understand the biological process 

inside a cell, the knowledge of the subcellular localization of protein, 

RNA, and DNA molecules is indispensible. In order to timely obtain the 

information of their subcellular localization, many bioinformatics tools 

for predicting the subcellular localization of proteins molecules based on 

their sequence information alone have been developed (see, e.g., (Cai et 
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al., 2006; Cai et al., 2002; Cheng et al., 2017b; Cheng et al., 2018a; 

Cheng et al., 2017d; Chou and Cai, 2002; Chou and Cai, 2003; Chou and 

Shen, 2008; Chou and Shen, 2010; Chou et al., 2011; Chou et al., 2012; 

Lin et al., 2009; Xuao et al., 2018; Zhu et al., 2015) as well as a long list 

of references cited in two comprehensive reviews (Chou and Shen, 2007; 

Nakai, 2000). However, relatively much fewer bioinformatics tools were 

developed for predicting the subcellular localization of RNA molecules.  

Long non-coding RNAs (lncRNAs) are a class of RNA molecules 

with more than 200 nucleotides and have little or no protein-coding 

capacity (Spizzo et al., 2012). The large-scale analysis of animal tran-

scriptions showed that the diversity of lncRNA is far exceed that of 

protein-encoded mRNAs (Carninci and Hayashizaki, 2007; Carninci et 

al., 2005; Kapranov et al., 2007; The, 2007). lncRNA was originally 

thought to be a non-functional by product of RNA polymerase II tran-

scripts that are false transcription noise (Struhl, 2007). However, more 

and more researches have reported that they have important biological 

functions. Accumulated evidences suggest that lncRNAs have important 

functional diversity in cell development and metabolism, including ge-

netic markers, genome rearrangement, chromatin modification, cell cycle 

regulation, transcription, splicing, mRNA decay and translation (Gong 

and Maquat, 2011; Huarte et al., 2010; Hung et al., 2011; Kino et al., 

2010; Kretz et al., 2013; Lee, 2010; Tripathi et al., 2010; Tripathi et al., 

2013; Tsai et al., 2010; Xu et al., 2013a; Yap et al., 2010; Yi et al., 

2013). Their abnormal expression has been shown to be associated with 

several types of cancer, Alzheimer’s disease, Huntington’s disease and 

cardiovascular diseases (Gupta et al., 2010; Johnson, 2012; Lin et al., 

2007; McPherson et al., 2007; Mourtada-Maarabouni et al., 2009; Panzitt 

et al., 2007; Pasmant et al., 2007; Wang et al., 2010; Zhang et al., 2010; 

Zhao et al., 2005).  

Initial studies on lncRNAs have showed that they tend to locate in the 

nucleus and chromatin for epigenetically regulating gene expression 

(Hutchinson et al., 2007; Mondal et al., 2010; Rinn et al., 2007; Tsai et 

al., 2010; Whitehead et al., 2009; Zhao et al., 2008). There exists a sub-

stantial population of lncRNAs in the cytoplasm (Carlevaro-Fita et al., 

2016; Ulitsky and Bartel, 2013; van Heesch et al., 2014) for regulating 

protein translation (Schein et al., 2016; Yoon et al., 2012; Zucchelli et 

al., 2016), protein trafficking (Aoki et al., 2010; Kino et al., 2010), or 

miRNA decoys (Cesana et al., 2011). Intracellular localization of RNA is 

now regarded vitally important for understanding the mechanism of 

eukaryotic cell development and physiology (Donnelly et al., 2010; Weil 

et al., 2010). In prokaryotes, although there is a lack of nuclei and the 

coupling between transcription and translation, several studies have 

demonstrated that various RNA molecules are localized to specific sub-

cellular regions in bacterial cells (Broude, 2011; Keiler, 2011). It is 

easily deduced that the functions of lncRNAs are closely associated with 

their locations in cells. Therefore, the identification of subcellular loca-

tion of lncRNAs is very important. 

By using the fluorescent RNA-binding MS2 protein, the first observa-

tion about mRNA in live bacterial cells showed that the RNA transcripts 

in most cases are near the quarter points or close to the cell center, with 

limited motion (Hiraga, 2000; Nevo-Dinur et al.). Valencia-Burton et al. 

used fluorescence protein complementation to monitor RNA localization 

in live prokaryotic cells and found that the lacZ mRNA, the 5S RNA and 

short non-coding RNA were distributed in cytoplasm, nucleoid and cell 

poles, respectively (Valencia-Burton et al., 2007). Although these bio-

chemical methods provide very reliable and precise information to de-

termine the subcellular localization of RNAs, they are both expensive 

and time consuming. Computational methods could overcome these 

disadvantages and provide high-throughput outcomes. As mentioned 

above, during the past three decades, many efforts have been made by 

focusing on the prediction of protein subcellular localization by means of 

bioinformatics approaches. The similarity between the distribution pat-

terns exhibited by proteins and RNA suggests that their localization is 

intimately linked to each other (Nevo-Dinur et al.). This linkage suggests 

that the RNA subcellular localization could also be predicted by using 

quite similar methods. 

To study the RNA subcellular localization, Zhang et al. constructed a 

database called RNALocate, which collected more than 37,700 manually 

curated RNA subcellular localization entries (Zhang et al., 2017). Subse-

quently, Mas-Ponte et al. (Mas-Ponte et al., 2017) built a database called 

LncATLAS to store the subcellular localization of lncRNA. Cheng et al. 

(Cheng and Leung, 2018) systematically investigated the distribution of 

lncRNA subcellular localization in gastric cancer and uncovered its 

association with cancer. As a pioneer work, Feng et al. (Feng et al., 

2017b) developed a computational method to predict the organelle loca-

tion of noncoding RNAs (ncRNAs) by collecting ncRNAs from kineto-

plast, mitochondrion and chloroplast genomes. Subsequently, Zhen, et al. 

(Zhen et al., 2018) developed a predictor called lncLocator to predict the 

subcellular localization of long non-coding RNAs. 

 

Fig. 1. A flowchart to outline the 5-step rule used in this study. 

In this study, we are devoted to developing a computational method to 

predict lncRNA subcellular localization. As demonstrated by a series of 

recent publications (Chen et al., 2018a; Chen et al., 2016b; Chen et al., 

2017b; Feng et al., 2017a,b; Feng et al., 2018; Khan et al., 2018; Liu et 

al., 2017c; Liu et al., 2018b; Qiu et al., 2017a; Song et al., 2018b; Song 

et al., 2018c), presenting a new predictor by observing the 5-step rules 

(Chou, 2011) would have the following merits: (1) more transparent in 

logic development; (2) outcome easier to be repeated by others; (3) more 

inspiring; (4) large impacts.  
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Below, let us also follow the 5-step guidelines to present our new pre-

diction method; i.e., (1) construct a reliable benchmark dataset to train 

and test model; (2) formulate the biological sequence samples with an 

effective mathematical expression that can truly reflect their intrinsic 

correlation with the target to be predicted; (3) introduce or develop a 

powerful algorithm (or engine) to operate the prediction; (4) properly 

perform cross-validation tests to objectively evaluate the anticipated 

accuracy of the predictor; (5) establish a user-friendly web-server for the 

predictor that is accessible to the public. Illustrated in Fig.1 is an outline 

of the 5-steps and their detailed development. 

2 Methods 

2.1. Benchmark Dataset 

Constructing a high quality benchmark dataset is the first prerequisite to 

establish a reliable model. To realize this, we collected the lncRNA 

samples from RNALocate (http://www.rna-society.org/rnalocate/). A 

total of 923 lncRNA sequences with annotated subcellular localization 

were obtained. Since highly similar data will cause overestimation on the 

prediction quality, to get rid of the redundancy and avoid bias, the CD-

HIT (Li and Godzik, 2006) program was utilized to winnow those 

lncRNA samples that had ≥ 80% pairwise sequence identity with any 

other in a same subset. Finally, we obtained 655 lncRNA sequences, 

which are classified into four subsets, as formulated by � � ��⋃��⋃��⋃��    (1) 

where the subset ��  contains 156 lncRNAs from nucleus (Fig.2), �� 

contains 426 samples from cytoplasm, ��  contains 43 lncRNAs from 

ribosome, and �� contains 30 lncRNAs from exosome. The symbol ⋃ 

represents the ‘union’ in the set theory. For readers’ convenience, the 

accession numbers of these lncRNA samples and their sequences are 

given in Supporting Information S1, which can also be directly down-

loaded at http://lin-group.cn/server/iLoc-LncRNA/Supp-S1.txt 

 

 

Fig. 2. A schematic drawing to show the four locations of lncRNAs in a cell. 

2.2. Sample Formulation 

Now let us consider the 2nd step of the 5-step rule (Chou, 2011); i.e., 

how to formulate the lncRNA sequence samples with an effective math-

ematical expression that can truly reflect their essential correlation with 

the target concerned. Given an lncRNA sequence R, its most straight-

forward expression is (Chen et al., 2015a) � � N�N�N�N�N
N�N�⋯N�   (2) 

where L denotes the lncRNA’s length or the number of its constituent 

nucleic acid residues, N�is the 1st residue, N� the 2nd residue, N� the 3rd 

residue, and so forth. Since all the existing machine-learning algorithms 

can only handle vectors (Chou, 2015), we have to convert an lncRNA 

sample from its sequential expression (Eq.2) to a vector. But a vector 

defined in a discrete model might completely miss all the sequence-order 

or pattern information. To deal with this problem, the PseKNC (Pseudo 

K-tuple Nucleotide Composition) was introduced (Chen et al., 2014), 

which is an extension of PseAAC (Pseudo Amino Acid Composition) 

(Chou, 2001; Chou, 2005) that can be used to deal with DNA/RNA 

sequences. Ever since then, the concept of PseKNC has been widely and 

increasingly used in many areas of computational genomics/genetics 

with the aim to grasp various different sequence patterns that are essen-

tial to the targets investigated (see, e.g., (Chen et al., 2013; Chen et al., 

2015b; Feng et al., 2017a; Feng et al., 2018; Guo et al., 2014; Kabir and 

Hayat, 2016; Lin et al., 2014; Liu et al., 2018a; Liu et al., 2018b; Qiu et 

al., 2017b; Xiao et al., 2016; Yang et al., 2018) and a long list of refer-

ences cited in a recent review papers (Chou, 2017)). According to the 

concept of general PseKNC (Chen et al., 2015a), any RNA sequence can 

be formulated as a PseKNC vector given by � � �ϕ�			ϕ� 			⋯			ϕ� 			⋯			ϕ���   (3) 

where T is the transposing operator, the subscript Γ is an integer, and its 

value and the components ϕ�	�� � 1, 2,⋯ �  will depend on how to 

extract the desired features and properties from the RNA sequence. In 

this study, their definitions are described below. 

K-tuple (or called K-mer) nucleotide composition has important bio-

logical significance (Ghandi et al., 2014) and has been widely applied in 

DNA/RNA regulatory element recognition (Chen et al., 2017b; Feng et 

al., 2018; Zhao et al., 2017; Zhu et al., 2015). Some studies on evolu-

tionary mechanism and biological functions of 8-mers containing CG 

dinucleotide in yeast have shown (Jia et al., 2018) that the 8-mer distri-

bution has a unique evolutionary mechanism. In order to characterize 

each lncRNA sequence as accurately as possible, the 8-mer composition 

was proposed to describe lncRNA samples in this study. Thus, the di-

mension of PseKNC in Eq.3 is  Γ � 4� � 4� � 65536                                   (4) 

And the u-th 8-mer therein is given by  

ϕ� � 
#$∑ #&'(()'&*+ � #$��,��   (5) 

where � and L denote the numbers of the u-th 8-mer and the length of 

the sample sequence, respectively. Thus, the lncRNA sample can be 

defined in a 65536-D vector given by  � � -ϕ�,ϕ�,ϕ�, ⋯ , ϕ� ,⋯ ,ϕ�

��.� (6) 

2.3. Feature Selection 

One may notice that if the lnRNA sample is represented by a vector of 

65,536 dimensions, which may cause the following three problems (Ding 

et al., 2012; Feng et al., 2013; Lai et al., 2017; Liu et al., 2015; Tang et 

al., 2016b; Wang et al., 2008; Yang et al., 2016; Zhao et al., 2016; Zhao 

et al., 2017; Zhu et al., 2010): (1) redundant or irrelevant noise yielding 

poor prediction quality; (2) over-fitting problem resulting in the model 

with very low generalization ability; (3) the “dimension disaster” or 

“curse of dimensionality”. Fortunately, these problems could be im-

proved by means of the feature selection approach. In fact, some feature 

selection techniques such as principal component analysis (PCA) (Du et 

al., 2017), analysis of variance (ANOVA) (Chen et al. 2016c; Lin et al., 
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2015; Tang et al., 2016a; Tang et al., 2016b; Tang et al., 2018), diffusion 

Maps (Yin et al., 2011), and mRMR (Minimal Redundancy Maximal 

Relevance) approach (Hu et al., 2011; Huang et al., 2011a; Huang et al., 

2011b; Huang et al., 2012; Li et al., 2012a; Li et al., 2012b; Wang et al., 

2011; Zheng et al., 2012) had been proposed to alleviate the interference 

from noise or irrelevant features so as to improve the prediction quality. 

In this study, we proposed a powerful technique based on binomial dis-

tribution (Lai et al., 2017) to winnow out the most optimal features. 

In order to judge whether the occurrence of an 8-mer segment in RNA 

is completely random, let us define the prior probability /0 given by /0 � 123     (7) 

where 40 denotes the number of a given 8-mer segment occurring in the 

j-th type of sample (j= 1, 2, 3, and 4 corresponding to the subcellular 

locations “Nucleus”, “Cytoplasm”, “Ribosome”, and “Exosome”, respec-

tively); M is the total number of all different 8-mer segments in the four 

subsets. 

Obviously, the probability of the i-th 8-mer occurring in the j-th type 

of lncRNA can be defined as 567809 � ∑ :&!1!�:&,1�! /0161 − /09:&,1:&1=#&2  (8) 

where >8  represents the total number of the i-th 8-mer segment in the 

benchmark dataset, 780 represents the number of occurrences of the i-th 

8-mer segment in the j-th type of lncRNA, and the sum is taken from 780 
to >8. If the i-th 8-mer segment occurring in the j-th subset is not random 

and biologically significant, the 567809 will be very small. Thus, we may 

define the confidence level of this statement as ?@80: ?@80 � 1 − 567809   (9) 

According to Eqs. (7)-(9), we ranked the 65,536 8-mer vectors in de-

scending order based on their ?@ values. Because there are four kinds of 

subcellular locations considered in this study, there will be four CL val-

ues for each of the 8-mer segments. Finally, we assigned the largest one 

for the ?@ of the i-th 8-mer vector; i.e.,  ?@8 � max	�?@8�, ?@8�, ?@8�, ?@8��  (10) 

2.4. Support Vector Machine (SVM) 

SVM is a machine-learning algorithm based on the statistical learning 

theory, which can improve the generalization ability of learning machine 

and minimize the risk of experience and the scope of confidence by 

minimizing the structural risk. Thus, a good statistic result can be usually 

achieved even in small sample. As a powerful supervised learning meth-

od, SVM has been widely used in bioinformatics (see, e.g., (Cai et al., 

2002; Cai et al., 2003; Chen et al., 2016a; Chou and Cai, 2002; Ehsan et 

al., 2018; Hayat and Iqbal, 2014; Kumar et al., 2015; Lai et al., 2017; 

Mohabatkar et al., 2011; Zhao et al., 2017)). In this paper, the LIBSVM 

3.21(Chang and Lin, 2011) was used to perform the prediction, which 

can be freely downloaded from 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/. Since it is suitable for non-

linear classification, the radial basis function (RBF) kernel was selected 

as kernel function. The one-versus-one (OVO) strategy was used for 

multiclass classification. In order to construct the optimal model, the 

regularization parameter C and the kernel width parameter γ were opti-

mized via an optimization procedure using a grid search approach, of 

which the search spaces for C and γ were [2,
, 2�
� and [2�, 2,�
� with 

step sizes of 2 and	2,�, respectively. 

The predictor thus constructed is called “iLoc-lncRNA” where “iLoc” 

stands for “identify or predict subcellular localization’, and “lncRNA” 

for “long non-coding RNAs”.  

2.5. Performance Evaluation 

The classification performance for the subcellular localization of 

lncRNA was evaluated using sensitivity (Sn), specificity (Sp), Matthew’s 

correlation coefficient (MCC) and overall accuracy (OA) (Chen et al., 

2007), which are formulated as (Cheng et al., 2018a; Cheng et al., 

2018b; Cheng et al., 2017d; Feng et al., 2013; Liu et al., 2018b; Xiao et 

al., 2017)  

DE
EF
EE
GSn�J� � 1 − :KL�8�:L�8� 																																											0	 ≤ Sn�J� ≤ 1								
Sp�J� � 1 − :LK�8�:K�8� 																																											0 ≤ Sp�J� ≤ 1									
MCC�J� � +KRSKL�&�SL�&�LSLK�&�SK�&�T

UR+LSLK�&�KSKL�&�SL�&� T	R+LSKL�&�KSLK�&�SK�&� T
								− 1 ≤ MCC�J� ≤ 1

OA �	 �X∑ �>Y�J� − >,Y�J��Z8=� 																					0	 ≤ OA	 ≤ 1										
 (11) 

where >Y�J� is the total number of lncRNA samples in the i-th subset, >,Y�J� is the number of the samples in >Y�J� that are incorrectly predict-

ed to be of other locations; >,�J� is the total number of lncRNA samples 

in any location but not the i-th location, whereas >Y,�J� is the number of 

the samples in >,�J� that are incorrectly predicted to be of the i-th loca-

tion; ζ is the total number of the concerned, and δ is the number of the 

total samples in the benchmark dataset.  

It is instructive to point out, however, the set of metrics of Eq.11 is 

valid for the single-label systems in which each sample has one and only 

one label or just belongs to one attribute. For the multi-label systems 

where a sample may simultaneously belong to several different attrib-

utes, whose existence has become increasingly frequent in system biolo-

gy (Cheng et al., 2017a; Cheng et al., 2017b; Cheng et al., 2017c; Cheng 

et al., 2018a; Cheng et al., 2017d; Xiao et al., 2017), system medicine 

(Cheng et al., 2017e; Cheng et al., 2017f) and biomedicine (Qiu et al., 

2016b), a completely different set of metrics as defined in (Chou, 2013) 

is needed.” 

3 Results and discussion 

3.1 Prediction accuracy 

As described in Section 2.2, each LncRNA sample was formulated as a 

65,536-D PseKNC vector (Eq.6). By examining the performance of 

iLoc-lncRNA predictor via the 5-fold cross-validation on the benchmark 

dataset, we observed that the overall accuracy is 69.77% when C=2] and 

γ=2,�
 . Although high-dimensional feature vector may contain more 

information of the LncRNA sample, it may unavoidably include a lot of 

noise as well, which could reduce the predictor’s accuracy. Moreover, it 

is time-consuming to train the model using a high-dimensional vector. 

Therefore, to construct a more accurate predictor, it is necessary to ex-

clude noise from the high-dimensional feature vectors. To realize this, 

the binomial distribution approach as given in Eqs.7-10 can serve to do 

so. By investigating the performance of iLoc-lncRNA predictor with the 

CL being 99.99%, we found that the corresponding model could improve 

the accuracy from 69.77% to 72.06%. Even though, it is still far from our 

satisfaction because the number of these 8-mer segments was so small 

that many important information might be lost. Therefore, it is crucially 

important to choose the optimal number of features to build a robust and 

efficient predictive model.  

We used the IFS strategy to build the optimal feature subsets. At first, 

the feature subset started from the 8-mer-vector with the maximum ?@ 

value in the ranked feature set. Then, a new feature subset was produced 

when the second 8-mer with the second biggest ?@ value was added. 

This process was repeated from the highest ?@ value to the lowest ?@ 

value until all candidate 8-mer vectors were added. Thus, a total of 
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65,536 feature subsets were collected and the same number of SVM-

based models were built accordingly. Their prediction capabilities were 

investigated by using the 5-fold cross-validation test. The most optimal 

feature set was obtained when the overall accuracy reaches its maximum. 

The corresponding IFS curve was plotted in a 3-D Cartesian coordinate 

system with feature dimension as its X-coordinate, 1-CL as its Y-

coordinate and overall accuracy as its Z-coordinate (Fig. 3). It can be 

seen that the overall accuracy was reaching its maximum of 86.11% 

when the CL was selected as 99.19%, with the number of 8-mers features 

being 4107. In other words, when Γ � 4107 for the PseKNC of Eq.3, the 

model would perform the best. The 4,107 vector components thus ob-

tained for each of the protein samples in the benchmark dataset are given 

in Supporting Information S2, which can also be directly downloaded at 

http://lin-group.cn/server/iLoc-LncRNA/Supp-S2.txt. 

 

Fig. 3. A plot showing the IFS procedure in a 3-D space. When the dimension of Eq.3 

was Γ � 4107 a peak of 86.11% was reached by 5-fold cross-validation. 

Subsequently, the rigorous jackknife tests was used on the same 

benchmark dataset to examine the performance of the new proposed 

predictor iLoc-lncRNA when Γ � 4107 for the PseKNC of Eq.3. The 

final outcomes thus obtained by the iLoc-lncRNA predictor for Sn, Sp, 

MCC, and OA (cf. Eq.11) are listed in Table 1, where for facilitating 

comparison with the corresponding results by lncLocatior (Zhen et al., 

2018), the state-of-the-art predictor for the same purpose, the re-

estimated results are also given.  

Table 1. A comparison of the proposed predictor with the existing pre-

dictor. 

Location 

iLoc-lncRNA
a
 lncLocator

b
 

Sn
c
  

(%) 

Sp
c
  

(%) 
MCC

c
 

OA
c
  

(%) 

Sn
c
  

(%) 

Sp
c
  

(%) 
MCC

c
 

OA
c 

(%) 

Nucleus 77.56 97.59 0.796 

86.72 

38.15 92.17 0.357 

66.50 
Cytoplasm 99.06 67.68 0.742 88.01 36.36 0.288 

Ribosome 46.51 99.83 0.652 7.00 97.53 0.070 

Exosome 16.67 1.00 0.400 4.00 97.27 0.015 

a Proposed predictor in this paper. 
b The existing state-of-the-art predictor (Zhen et al., 2018). 
c See Eq.11 for the definition of metrics. 

As we can see from the table, the proposed iLoc-lncRNA is remarka-

bly superior to the lncLocator (Zhen et al., 2018) from the measurement 

by each of the four metrics in Eq.11. Particularly, the overall accuracy 

achieved by the proposed predictor is over 20% high than the existing 

state-of-the-art predictor, implying that the powerful new predictor will 

become a high throughput tool widely used in both basic research and 

drug development. 

3.2 Web-server and user guide 

As pointed out in (Chou and Shen, 2009), user-friendly and publicly 

accessible web-servers represent the future direction for developing 

practically more useful predictors. Actually, user-friendly web-servers as 

given in a series of recent publications (Chen et al., 2017a; Chen et al., 

2018b; Jia et al., 2015; Jia et al., 2016a; Jia et al., 2016b; Liang et al., 

2017; Liu et al., 2017a; Liu et al., 2018a; Liu et al., 2017b; Liu et al., 

2016; Qiu et al., 2016a; Qiu et al., 2016c; Song et al., 2018a; Song et al., 

2018c; Wang et al., 2018; Wang et al., 2017; Xu et al., 2013b; Xu et al., 

2014; Yang et al., 2018) will substantially increase the impacts of the 

bioinformatics tools because they can be easily used by broad experi-

mental scientists (Chou, 2017). In view of this, a user-friendly and public 

accessible web-server for the new iLoc-lncRNA predictor has also been 

established. Moreover, to maximize users’ convenience, a step-by-step 

guide is given below. 

Step 1. Open the web server at http://lin-group.cn/server/iLoc-LncRNA 

and you will see the top page of iLoc-LncRNA shown on your computer 

screen (Fig.4). 

 

Fig. 4. A semi-screenshot for the top page of the iLoc-LncRNA webserver at http://lin-

group.cn/server/iLoc-LncRNA. 

Step 2. Either type or copy/paste the query RNA sequences into the 

input box at the center of Figure 4. The input sequences should be in the 

FASTA format. And click on the Submit button to see the predicted 

result. For example, if using the four query RNA sequences in the Ex-

ample window as the input, after clicking the Submit button, you will see 

the following shown on the screen of your computer. (1) The first query 

LncRNA is predicted to locate in Nucleus. (2) The second query 

LncRNA in cytoplasm. (3) The third query LncRNA in ribosome. (4) 

The fourth query LncRNA in exosome. All these results are perfectly 

consistent with experimental observations. 

Step 3. Click the Download button to get the Supporting Information 

mentioned in this paper. 

Step 4. Click on the Citation button to find the relevant papers that play 

the key roles in developing the iLoc-LncRNA predictor. 
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Step 5. Click on the Help button to view the relevant instructions and the 

caveat when using it. 

4 Conclusion 

In this paper, a binomial distribution-based feature selection technique 

was introduced to reduce the feature dimension for avoiding the over-

fitting problem, excluding the redundant information, reducing computa-

tional complexity, and improving accuracy as well as generalization 

ability of the model. In fact, some traditional feature selection techniques 

such as the ANOVA have been used to optimize features. However, 

these techniques are usually suitable for the data obeying normal distri-

bution. For high dimension k-mer composition, the features obey bino-

mial distribution. Thus, we may use binomial distribution to perform 

feature selection. 

The proposed predictor “iLoc-lncRNA” is superior to the existing 

state-of-the-art predictor in identifying the subcellular localization of 

lncRNAs, as clearly indicated by the compelling data listed in Table 1. 

The powerful predictor will undoubtedly become a high throughput 

bioinformatics tool for in-depth studying various cellular biological 

processes including genetic markers, genome rearrangements, chromatin 

modifications, cell cycle regulation, transcription and translation. It has 

not escaped our notice that the novel approach presented here may also 

be used to deal with many other biological systems. 
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