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iRNA-2OM: A Sequence-Based Predictor for Identifying

20-O-Methylation Sites in Homo sapiens
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ABSTRACT

20-O-methylation plays an important biological role in gene expression. Owing to the explosive
increase in genomic sequencing data, it is necessary to develop a method for quickly and
efficiently identifying whether a sequence contains the 20-O-methylation site. As an additional
method to the experimental technique, a computational method may help to identify 20-O-
methylation sites. In this study, based on the experimental 20-O-methylation data of Homo
sapiens, we proposed a support vector machine-based model to predict 20-O-methylation sites
in H. sapiens. In this model, the RNA sequences were encoded with the optimal features obtained
from feature selection. In the fivefold cross-validation test, the accuracy reached 97.95%.

Keywords: 20-O-methylation, chemical property, Homo sapiens, PseKNC, RNA sequence.

1. INTRODUCTION

2
0-O-methylation is catalyzed by the 20-O-methylation transferase. In the reaction, a methylation

group is added to the 20-hydroxyl group of the ribose moiety of a nucleotide (Fig. 1; Kiss, 2002). 20-O-

methylation is one kind of post-transcriptional modification in various cellular RNAs and plays critical

roles in the regulation of gene expressions at the post-transcriptional levels (Bachellerie et al., 2002).

When the 20-O-methylation sites accumulate around the functional region of ribosomal RNA (rRNA), they

affect the ribosome structure and function (Decatur and Fournier, 2002). When the ribose 20-O-methylation occurs

in the cap structure of the messenger RNA (mRNA), the RNA sensor Mda5 (Zust et al., 2011) can distinguish

between itself and nonautologous mRNA. In addition, the 20-O-methylation at the 30 end of Piwi-interacting RNA

(piRNA), endo-small interfering RNAs, and microRNAs can protect the molecules from uridine (Li et al., 2005)

and exonuclease degradation and regulate specific RNAi pathways (Ramachandran and Chen, 2008).

Although 20-O-methylation had been explored, the mechanism of 20-O-methylation in mRNA is still

unclear (Maden, 2001). Therefore, it is necessary to reveal the mechanism of RNA 20-O-methylation.

Accurate identification of 20-O-methylation sites is the key step in understanding its regulatory mech-

anism. Many biochemical approaches have been developed to detect and analyze RNA 20-O-methylation

(Dong et al., 2012), such as liquid chromatography coupled with mass spectrometry and two-dimensional

thin-layer chromatography approaches. Recently, the RTL-P method based on reverse transcription at low

dNTP concentrations and PCR was proposed to identify both previously characterized and novel 20-O-

methylated sites in human rRNA, yeast rRNA, and mouse piRNAs.

1Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center
for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.

2Department of Physics, School of Sciences, and Center for Genomics and Computational Biology, North China
University of Science and Technology, Tangshan, China.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 25, Number 0, 2018

# Mary Ann Liebert, Inc.

Pp. 1–12

DOI: 10.1089/cmb.2018.0004

1

D
ow

nl
oa

de
d 

by
 Q

ue
en

 M
ar

y 
&

 W
es

tf
ie

ld
 C

ol
l f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

8/
23

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Although many details of the 20-O-methylation sites can be obtained in biochemical experiments, the

experimental techniques and processes are often time consuming and expensive. With the large number of

biological sequences produced in the postgenome era, it is necessary to develop the computational method

to identify 20-O-methylation sites (Zust et al., 2011; Sun et al., 2016). Thus, the machine-based approach is

usually quite robust and effective in dealing with various biological problems and becomes a comple-

mentary method to the experimental technique.

In this study, based on the experimental 20-O-methylation data of Homo sapiens, we presented a support

vector machine (SVM)-based model to predict 20-O-methylation sites in H. sapiens. The minimal redun-

dancy maximal relevance (mRMR) was used to pick out the over-represented features. In the fivefold cross-

validation, our method achieved an overall accuracy of 97.95%.

For the convenience of the scientific community, a freely accessible web server for the proposed method

is provided at http://lin-group.cn/server/iRNA-2OM.

2. METHODS

2.1. Benchmark data set

The original data containing experimentally validated 20-O-methylation sites in H. sapiens were

downloaded from RMBase (Sun et al., 2016). The RMBase (http://mirlab.sysu.edu.cn/rmbase) is a database

of RNA-modified genome-wide data identified in 18 independent studies of high-throughput modified data.

In the previous study (Chen et al., 2016b), based on RMBase, to avoid redundancy and reduce homology

deviations, 80% similarity RNA sequences were removed by using the CD-HIT procedure (Fu et al., 2012).

Finally, a total of 147 20-O-methylation site contained sequences in H. sapiens were obtained and treated as

positive samples. These sequences are all 41-nt long with the 20-O-methylation site in the center.

The negative samples were produced by selecting the 41-nt long sequences, in which the central nu-

cleotides were not 20-O-methylated. A large number of negative samples could be obtained. It is well

known that an imbalanced data set can significantly affect the evaluation results of the proposed models.

Therefore, 147 negative samples were randomly picked out to balance positive and negative samples. Thus,

the final benchmark data set was formulated as

S = S + [ S - ‚ (1)

where S is the benchmark data set, S + is the positive subset containing 147 true 20-Omethylation site

contained sequences, S - is the negative subset containing 147 false 20-O-methylation site contained

sequences of H. sapiens, which are available at (http://lin-group.cn/server/iRNA-2OM).

2.2. Support vector machine

SVM is a supervised learning model for pattern recognition, classification, and regression analysis. It has

been successfully applied in the field of bioinformatics (Cao et al., 2014; Chen et al., 2016d; Tang et al.,

FIG. 1. Schematic diagram of 20-O-methylation.
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2016; Yang et al., 2016; Zhao et al., 2016, 2017; Zou et al., 2016a; Dao et al., 2017; Lai et al., 2017; Lin

et al., 2017; Manavalan and Lee, 2017; Manavalan et al., 2017, 2018a, 2018b; Feng et al., 2018). The basic

idea of SVM is to transform the data into a high-dimensional feature space and then determine the optimal

separating hyperplane. Gaussian radial basis function (RBF) is a widely used kernel function due to its wonderful

performance in nonline classification. Thus, the RBF kernel function was used in the study. Some software

packages have been developed for reducing the programming burden of researchers, including LIBSVM,

mySVM, and SVMLight (Sch and Burges, 1999; Chang et al., 2000). In this study, we used the free software the

LIBSVM 3.20 package to implement SVM (Chang et al., 2000). In the SVM operation engine, the grid search

method was applied to optimize the regularization parameter C and kernel parameter c:

2 - 5 � C � 215 with step DC = 2

2 - 15 � c � 2 - 5 with step Dc = 2 - 1

�
(2)

2.3. Chemical properties

A RNA chain is composed of four types of nucleotides: adenine (A), guanine (G), cytosine (C), and

uracil (U).

In this article, RNA chemical properties were used to encode RNA sequence (Chen et al., 2016a,b,c).

According to their chemical properties, the four nucleotides can be classified into three different groups

(Chen et al., 2017), as shown in Table 1.

In terms of ring structure, adenine and guanine have two rings, whereas cytosine and uracil have only one ring.

When forming secondary structures, guanine and cytosine have strong hydrogen bonds, whereas adenine and

uracil have weak hydrogen bonds. In terms of chemical functionality, adenine and cytosine can be classified into

the same group, called amino group, whereas guanine and uracil can be classified into the keto group.

To reflect these chemical properties, we denote the i-th nucleotide as

Ni = xi‚ yi‚ zið Þ : (3)

Three coordinates xi‚ yi‚ zið Þ were used to represent the three chemical properties and the value of 1 or 0

was assigned to the coordinates. Each nucleotide can be encoded by the following formula:

xi = 1 if Si� A‚ Gf g
0 if Si� C‚ Uf g

�
(4)

yi = 1 if Si� A‚ Cf g
0 if Si� G‚ Uf g

�
(5)

zi = 1 if Si� A‚ Uf g
0 if Si� C‚ Gf g

�
: (6)

Thus, A, C, G, and U can be, respectively, represented with the coordinates (1, 1, 1), (0, 1, 0), (1, 0, 0),

and (0, 0, 1).

2.4. Nucleotide composition

The density di of any nucleotide nj at position i in an RNA sequence from the nucleotide composition

surrounding the 20-Omethylation site in the training data set of the sequence is defined as (Chen et al.,

2016b; Feng et al., 2017):

Table 1. Classification of Nucleotides

Chemical properties Attribute Nucleotides

Ring structure Two rings A, G

One ring C, U

Hydrogen bond Strong A, C

Weak G, U

Chemical functionality Amino group A, U

Keto group U, G
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di =
1

Nij j
Xl

j = 1

f nj

� �
‚ f nj

� �
= 1 if nj = q

0 othercases

�
(7)

where l is the sequence length, Nij j is the length of the i-th prefix string n1‚ n2‚ . . . ‚ nif g in the sequence,

and q 2 A‚ C‚ G‚ Uf g.

2.5. Type 2 PseKNC

To consider the global information and the local information of the sequence, type 2 PseKNC method

was adopted (Chen et al., 2014). The new feature data reflect both the local and the global sequence

information of the nucleotide sequence.

The type 2 PseKNC can be expressed as

D = d1‚ d2‚ � � � d4k ‚ d4k + 1‚ d4k + 2‚ � � � d4k +L‚ � � � d4k +Lk - 1‚ d4k +Lk½ �T ‚ (8)

where

du =

fuP4k

i = 1
fu + x

PLk

j = 1
sj

‚ 1 � u � 4k
� �

xsuP4k

i = 1
fu + x

PLk

j = 1
sj

‚ 4k + 1 � u � 4k +Lk
� �

‚

8><
>: (9)

where x is weight factor for sequence order effect and fu is the normalized frequency expressed in

Equation(10):

s1 =
1

L - K - 1

XL - K - 1

i = 1
H1

i‚ i + 1

s2 =
1

L - K - 1

XL - K - 1

i = 1
H2

i‚ i + 1

..

.

sL =
1

L - K - 1

XL - K - 1

i = 1
HL

i‚ i + 1 k < (L - K)

..

.

sLk - 1 =
1

L - K - k

XL - K - k

i = 1
HL - 1

i‚ i + k

sLk =
1

L - K - k

XL - K - k

i = 1
HL

i‚ i + k

(10)

where L represents the number of nucleotide physical properties and di represents the structural rela-

tionship of the k-th layer of the nucleotide sequence:

Hv
i‚ i + j = Pv RiRi + 1ð Þ � Pv Ri + jRi + j + 1

� �
v = 1‚ 2‚ ::‚L; j = 1‚ 2‚ . . . ‚ k; i = 1‚ 2‚ . . . ‚ L - K - k

�
‚ (11)

where Pv RiRi + 1ð Þ represents the value of the physical properties of the v nucleotides of RiRi + 1 and

Ri + jRi + j + 1.

In general, the spatial position between the two base pairs can be described by six parameters, including

three translation parameters and three rotation parameters. The three rotation parameters are, respectively,

twist P1 RiRi + 1ð Þ, tilt P2 RiRi + 1ð Þ, and roll P3 RiRi + 1ð Þ, and the three translation parameters are, respectively,

shift P4 RiRi + 1ð Þ, slide P5 RiRi + 1ð Þ, and rise P6 RiRi + 1ð Þ, where RiRi + 1ð Þ represents the 16 possible dinu-

cleotides AA, AC, AG, AU, ., UU (Chen et al., 2013). It should be noted that the data should be normalized:

Pv RiRi + 1ð Þ = Pv RiRi + 1ð Þ - ÆPv RiRi + 1ð Þæ
SDÆPv RiRi + 1ð Þæ ‚ (12)

where < > represents the mean and SD represents the standard deviation. For the oligonucleotides, the

values of original physicochemical property can be obtained from previous studies (Brukner et al., 1995;
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Chen et al., 2015). The six structural properties of RNA and their corresponding standard-converted values

are given in Table 2.

2.6. mRMR-based feature selection

Feature selection is a process to select the most effective features from a set of features to reduce the

feature space dimension, and it is one of the key problems of pattern recognition (Zou et al., 2016b; Tang

et al., 2017). Feature selection can save the computation time, reduce the requirement of measurement and

storage, avoid over-fitting, and improve the prediction performance. In this study, mRMR method (Peng

et al., 2005) was employed to pick out optimal features.

mRMR algorithm is a method to obtain the maximum correlation features and remove the redundant

features. It takes into account not only the correlation between the feature and the label, but also the

correlation between features. Metrics are mutual information and measure the dependency. mRMR can be

considered as an approximation of the dependency relationship between the joint distribution of the

maximized feature subset and the target variable:

Maximum relevance. The relevance of features and categories is the highest:

max D S‚ cð Þ‚ D =
1

sj j
X
xi2S

I xi; cð Þ: (13)

Minimum redundancy. The minimum redundancy between features

min R S‚ cð Þ‚ R =
1

sj j2
X

xi‚ xj2S

I xi; xj

� �
: (14)

In Equations (13) and (14), S represents the subset of features that have been chosen, c is class label, and

x represents the feature. The final selection criteria are

max; D‚ Rð Þ‚ ; = D - R: (15)

The resulting subset can ensure that the correlation between the feature and the category is maximum and

that the redundancy of the feature is minimal.

2.7. Performance evaluation

To measure the prediction quality, the following four metrics: sensitivity (Sn), specificity (Sp), overall

accuracy (Acc), and Matthews correlation coefficient (MCC) were used in this study (Feng et al., 2013a,b;

Lin et al., 2014; Zhu et al., 2015; Jia et al., 2018). These measures are defined as follows:

Table 2. The Six Structural Properties of RNA

Dinucleotide

Twist Tilt Roll Shift Slide Rise

P1 (RiRi+1) P2 (RiRi+1) P3 (RiRi+1) P4 (RiRi+1) P5 (RiRi+1) P6 (RiRi+1)

GG 0.347 (32) -0.211 (0.3) 1.652 (12.1) -0.551 (-0.01) -1.407 (-1.78) 0.802 (3.32)

GA 0.347 (32) 1.321 (1.3) 0.413 (9.4) 0.147 (0.07) -0.969 (-1.7) 1.515 (3.38)

GC 2.2 (35) -0.67 (0) -1.102 (6.1) 0.147 (0.07) 0.729 (-1.39) 0.386 (3.22)

GU 0.347 (32) 0.555 (0.8) -1.698 (4.8) 1.545 (0.23) 0.51 (-1.43) 0.149 (3.24)

AG 0.888 (30) 0.096 (0.5) 0 (8.5) -0.813 (-0.04) 0.127 (-1.5) 0.564 (3.3)

AA -0.27 (31) -1.896 (-0.8) -0.689 (7) -1.163 (-0.08) 1.386 (-1.27) 0.862 (3.18)

AC 0.347 (32) 0.555 (0.8) -1.698 (4.8) 1.545 (0.23) 0.51 (-1.43) 0.149 (3.24)

AU 0.965 (33) 1.015 (1.1) -0.643 (7.1) -0.988 (-0.06) 0.893 (-1.36) 0.149 (3.24)

CG 2.741 (27) -0.823 (-0.1) 1.652 (12.1) 2.156 (0.3) -2.009 (-1.89) 0.564 (3.3)

CA -0.27 (31) 0.862 (1) 0.643 (9.9) 0.497 (0.11) 0.346 (-1.46) 1.931 (3.09)

CC 0.347 (32) -0.211 (0.3) 0.092 (8.7) -0.551 (-0.01) -1.407 (-1.78) 0.802 (3.32)

CU 0.888 (30) 0.096 (0.5) 0 (8.5) -0.813 (-0.04) 0.127 (-1.5) 0.564 (3.3)

UG -0.27 (31) 0.862 (1) 0.643 (9.9) 0.497 (0.11) 0.346 (-1.46) 1.931 (3.09)

UA 0.347 (32) -0.977 (-0.2) 1.01 (10.7) -0.639 (-0.02) 0.401 (-1.45) 0.089 (3.26)

UC 0.347 (32) 1.321 (1.3) 0.413 (9.4) 0.147 (0.07) -0.969 (-1.7) 1.515 (3.38)

UU -0.27 (31) -1.896 (-0.8) -0.689 (7) -1.163 (-0.08) 1.386 (-1.27) 0.862 (3.18)

The values in parentheses are original data, and those outside are the standard converted value.
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Sn = 1 - N +
-

N + 0 � Sn � 1

Sp = 1 - N -
+

N - 0 � Sp � 1

Acc = 1 - N +
- + N -

+
N + + N - 0 � Acc � 1

MCC =
1 -
�

N +
-

N + + N -
+

N -

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

1 + N -
+ - N +

-
N +

��
1 + N +

- - N -
+

N -

�r 0 � MCC � 1

8>>>>>>>>><
>>>>>>>>>:

‚ (16)

where N + is the total number of the 20-O-methylation site sequences investigated, N +
- is the number of 20-

O-methylation site sequences incorrectly predicted as the non-20-O-methylation site sequence, N - is the

total number of the non-20-O-methylation site sequences investigated, and N -
+ is the number of the non-20-

O-methylation site sequences incorrectly predicted as the 20-O-methylation site sequence.

Sn and Sp reflect the ability to correctly identify 20-O-methylation sites and correctly recognize non-20-O-

methylation sites, respectively. Acc is the overall accuracy of the discrimination between 20-O-methylation

sites and non-20-O-methylation sites. MCC values can intuitively measure a binary classification problem.

Meanwhile, the receiver operating characteristic (ROC) curve was also used to measure the prediction

performance of the current method. Its vertical coordinate represents the true positive rate (sensitivity) and

the horizontal coordinate represents the false positive rate. The area under the ROC curve, called AUC, is

an objective index to evaluate a predictor. An AUC value of 0.5 is equivalent to random prediction and an

AUC value of 1 represents a perfect one.

3. RESULTS AND DISCUSSION

3.1. Cross-validation

Cross-validation is a commonly used statistical analysis method for objectively evaluating the perfor-

mance of a classification model.

There are three commonly used cross-validation methods, independent data set test, n-fold cross-

validation test, and jackknife cross-validation test (Chou, 2011). To save computational time, the fivefold

cross-validation test was used to evaluate the performance of the proposed method in the study.

3.2. Parameter optimization

It can be seen from Equations (8) to (12) that there are three parameters to be optimized in our prediction

model: x, k, and k. Parameter x represents the weight, and its value range is 0 to 1. Parameter k represents the

short-range information of the RNA sequence and k represents the long-range information of the sequence. It is

obvious that the larger the values of k and k are, the more the features were extracted. If the two values can be

arbitrarily increased, it will usually cause excessive fitting and high-dimensional disaster and then decrease the

accuracy of the prediction. Here, the optimal parameters are obtained through grid search as follows:

2 � k � 6‚ D = 1

1 � k � 5‚ D= 1

0 � x � 1‚ D= 0:1

8<
: : (17)

Thus, we finally obtained 275 (5 · 5 · 11) results. We found that x = 1, k = 3, and k = 2 were the optimal

values and produce the highest overall accuracy of 95.57%.

3.3. Feature selection results

We encoded RNA sequence by integrating the three nucleotide chemical properties, nucleotide com-

position, and type 2 PseKNC. Therefore, each sample in the benchmark data set was encoded by a 240-

dimensional vector (3 · 41 + 41 + (43 + 6 · 2) = 240).

According to previous descriptions, to construct a robust and credible model, it is necessary to screen out

key features from the 240 feature vectors. The mRMR method was used to rank the features. By adding the

ranked features one by one according to the evaluations from mRMR, we established 240 SVM-based

predictors. We then tested the prediction performance for the predictors and plotted the incremental feature

6 YANG ET AL.
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selection curve as shown in Figure 2. When the top ranked 32 features were used, the maximum overall

accuracy in the fivefold cross-validation test reached 97.95%. We also investigated the model’s perfor-

mance using jackknife cross-validation. Results showed that the overall accuracy of 97.62% was obtained,

which was almost as high as that in fivefold cross-validated results. Interestingly, the 32 optimal features

are all chemical properties, indicating that chemical properties play an important role in the prediction of

20-O-methylation sites, whereas the nucleotide composition and type 2 PseKNC exist as noise. The prin-

ciple of mRMR is to investigate whether there is correlation redundancy between features. Thus, we may

conclude that sequence information and PseKNC cannot provide extra information to chemical properties

for prediction. The chemical features are sufficient to describe the prediction problem of 20-O-methylation

sites.

The detailed predictive performance of the predictors constructed from these 32 optimal features is

expressed as follows:

Sn = 97:27%

Sp = 98:63%

Acc = 97:95%

MCC = 0:959

8>><
>>:

: (18)

We also drew the ROC curve as shown in Figure 3. The AUC reached 0.9955, indicating that the

proposed method was a promising high-throughput tool for predicting 20-O-methylation sites. Then, we

FIG. 2. A plot showing the incremental feature

selection (IFS) procedure for identifying 20-O-

methylation site. When the top 32 features were

used to perform prediction, the overall success

rate reaches an IFS peak of 97.95% in fivefold

cross-validation. IFS.

FIG. 3. The receiver operating characteristic

curve for identifying 20-O-methylation sites.
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compared it with the previous method (Chen et al., 2016b) and found that the feature screening could

dramatically improve the accuracy (Table 3).

In the process of modeling, a suitable classification method is important for fast and reliable model

construction. Neural network has been widely used in pattern recognition, especially for deep learning (Cao

et al., 2016, 2017a,b). However, deep learning is more suitable for high-dimensional and large-sized

samples. Moreover, it consumes more time and computational resources for optimizing model parameters.

However, SVM is suitable for modeling small samples. Furthermore, the accuracy of SVM is high enough.

In SVM, four kernel functions (linear kernel, polynomial kernel, RBF kernel, and sigmoid kernel) have

been used in classification. RBF kernel function has been widely used in biological data classification because

it can map a sample into a higher dimensional space. However, it is necessary to investigate the performances

of different kernel functions for comparison. Table 4 gives the prediction results of four kernel functions. Four

kernel functions produced high prediction accuracies (>95%), demonstrating that the optimized features could

reflect the intrinsic characteristics of 20-O-methylation. Among the four kernel functions, RBF produced the

maximum accuracy. Thus, the final model was established based on the RBF kernel function.

3.4. Feature analysis

The mentioned results showed that our model could produce high accuracy. However, we also noticed

that eight samples were not correctly predicted. Thus, we should further investigate why these samples

were not correctly identified. At first, we statistically analyzed the distribution difference of the 32 optimal

features between positive and negative samples with Equation (19).

ui =
f P
i - f N

i

S
‚ (19)

where f P
i and f N

i , respectively, denote the occurrence frequencies of the i-th feature (i = 1, 2, ., 32) in

positive and negative samples. The denominator S is a standard error. The 32 u values from 32 optimal

features are plotted in Figure 4. Red (green) bars indicate that the features prefer to occur in positive

(negative) samples.

The eight incorrectly predicted samples including six incorrectly positive samples and two incorrectly

negative samples. Further statistical results showed that the features of the six negative samples always

occurred in positive samples. For example, all of them contain first four features (red) and excluded the fifth

and sixth features. The two positive samples possessed the features that usually occurred in negative

samples. Therefore, the eight samples were incorrectly predicted.

3.5. Web server guide

A web server can provide convenience for experimental scholars (Liang et al., 2017; Zhang et al.,

2017). Thus, a novel platform obtained through the mentioned procedures has been developed and named

Table 3. Comparison with Published Results

Method Acc (%) Sn (%) Sp (%) MCC

Our method 97.95 97.27 98.63 0.95

Chen et al. (2016b) 95.58 92.52 98.64 0.91

ACC, accuracy; MCC, Matthews correlation coefficient; Sn, sensitivity; Sp, specificity.

Table 4. Comparison with Kernel Functions

of Support Vector Machine

Kernel function Feature selected technique Acc (%)

Linear kernel mRMR 97.27

Polynomial kernel mRMR 96.59

RBF kernel mRMR 97.95

Sigmoid kernel mRMR 97.27

RBF, radial basis function.
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‘‘iRNA-2OM,’’ in which ‘‘i’’ means identify, ‘‘RNA’’ means the samples of RNA sequences, and ‘‘2OM’’

means 20-O-methylation. A step-by-step guide of the web server is given as follows:

Step 1. Open the HOME at http://lin-group.cn/server/iRNA-2OM/ and you will see a brief introduction

about the predictor.

FIG. 4. A chromaticity diagram for the 32 optimal features. The red bars indicate that the features prefer positive

samples, whereas green bars indicate the features prefer negative samples.

FIG. 5. A semiscreenshot for the WEBSERVER page of the iRNA-2OM web server at (http://lin-group.cn/server/

iRNA-2OM).
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Step 2. Click on the WEBSERVER button in banner and type or copy/paste the query RNA sequences into

the input box at the center. The input sequence should be in the FASTA format. Example sequences in

FASTA format can be obtained by clicking the example button (Fig. 5).

Step 3. Click on the SUBMIT button to see the predicted result. You will see the outcomes shown on the

screen of your computer.

Step 4. Click on the CITATION button to find the relevant articles that document the detailed development

and algorithm. The DOWNLOAD button provides the benchmark data sets used in our model. By

clicking on the HELP button, readers can read the relevant instructions and the caveat for use. The

CONTACT button provides relevant information about the developer.

4. CONCLUSIONS

20-O-methylation plays critical roles in regulating gene expressions at the post-transcriptional levels.

Thus, proper identification of the 20-O-methylation site is crucial to the understanding of the mechanism of

RNA. In this study, we proposed a SVM-based model to predict 20-O-methylation sites in H. sapiens. The

RNA sequence samples were encoded by nucleotide chemical properties, nucleotide composition, and type

2 PseKNC. The mRMR was used to pick out the optimal features. In the fivefold cross-validation test, an

accuracy of 97.95% was obtained. Comparison with other published methods showed that the proposed

method is superior to other methods. Based on the method, we established a free predictor called iRNA-

2OM that can be freely accessible at (http://lin-group.cn/server/iRNA-2OM/). We hope that our method

will become a useful tool for identifying 20-O-methylation sites.
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