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N6-methyladenosine (m6A) plays important roles in a branch of biological and

physiological processes. Accurate identification of m6A sites is especially helpful for

understanding their biological functions. Since the wet-lab techniques are still expensive

and time-consuming, it’s urgent to develop computational methods to identify m6A sites

from primary RNA sequences. Although there are some computational methods for

identifying m6A sites, no methods whatsoever are available for detecting m6A sites in

microbial genomes. In this study, we developed a computational method for identifying

m6A sites in Escherichia coli genome. The accuracies obtained by the proposed method

are >90% in both 10-fold cross-validation test and independent dataset test, indicating

that the proposed method holds the high potential to become a useful tool for the

identification of m6A sites in microbial genomes.

Keywords: N6-methyladenosine, machine learning method, nucleotide physicochemical properties, microbial

genome, pseudo nucleotide composition

INTRODUCTION

At present,∼150 kinds of RNAmodifications have been found in different RNA species (Boccaletto
et al., 2018), which not only enrich the genetic information, but also play critical roles in a
variety of biological processes as mentioned in a recent review (Roundtree et al., 2017). Among
these modifications, the N6-methyladenosine (m6A) is the most abundant posttranscriptional
modification and has been found in the three domains of life. m6A has been found to participate in
various biological activities, such as mRNA splicing (Nilsen, 2014), mRNA translation (Wang et al.,
2015), mRNA maturation (Hoernes et al., 2016), stem cell proliferation (Bertero et al., 2018), and
even a series of diseases (Zhang et al., 2016; Cui et al., 2017; Li et al., 2017).

In order to reveal its biological functions, different kinds of high-throughput sequencing
techniques have been proposed to map the locations of m6A on genome wide (Dominissini et al.,
2013; Linder et al., 2015; Wan et al., 2015; Hong et al., 2018). Although these techniques promoted
the research progress on understanding the biological functions and the identification of RNA
modifications, they are still labor-intensive and cost-ineffective. In addition, the resolution of
detecting m6A sites for most techniques is still not satisfactory. Therefore, it’s necessary to develop
novel methods to detect m6A sites.

Giving the credit to the experimental data yielded by these high-throughput sequencing
techniques as reported in a recent work (Chen X. et al., 2017), some machine learning based
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computational methods have been proposed to identify m6A sites
(Chen et al., 2015a,b, 2016a, 2017b,c; Zhou et al., 2016). Although
these methods are really good complements to experimental
methods for detecting m6A sites, to the best of our knowledge,
so far there is no computational tool available for detecting m6A
sites in microbial genomes.

Stimulated by the successful applications of machine learning
methods in computational genomics and proteomics (Chen et al.,
2012; Feng et al., 2013; Cao et al., 2016, 2017a,b; Hu et al.,
2018), in the present work, we presented a support vector
machine (SVM) based method for identifying m6A sites in
the Escherichia coli (E. coli) genome. By encoding the RNA
sequences using nucleotide chemical property and accumulated
nucleotide frequency, the proposed method obtained promising
performances in 10-fold cross validation test. Moreover, we also
validated the method on the independent dataset and obtained
satisfactory results.

MATERIALS AND METHODS

Benchmark Dataset
The m6A site containing sequences of E. coli genome were
obtained from the RMBase database (Xuan et al., 2018). All the
sequences are 41 bp long with the m6A site in the center. To
overcome redundancy and reduce the homology bias, sequences
with more than 80% sequence similarity were removed by using
the CD-HIT program (Fu et al., 2012). After such a screening
procedure, 2,055 m6A site containing sequences were retained
and regarded as positive samples.

The negative samples (non-m6A site containing sequences)
were obtained by choosing the 41-bp long sequences with
the central adenosine that was not experimentally confirmed
occurring methylation on its 6th nitrogen. By doing so, we
could obtain a large number of negative samples. After removing
sequences with identify >80%, the number of negative samples
are still dramatically larger than that of positive samples. To
balance out the numbers between positive and negative samples
in model training, we randomly picked out the same number of
negative samples and repeated this process 10 times. Therefore,
10 negative subsets were obtained, and each of them includes
2,055 non-m6A site containing sequences. The positive and
negative samples thus obtained are provided in Supplementary
Material.

Sequence Encoding Scheme
Inspired by recent studies (Chen et al., 2016b,c,d, 2017a,d; Feng
et al., 2017), in order to transfer the RNA sequences into discrete
vectors that can be recognized and handled by machine learning
methods, we encoded RNA sequences using nucleotide chemical
properties and accumulated nucleotide frequency. Their brief
descriptions are as following.

The four nucleotides, namely, adenine (A), guanine (G),
cytosine (C), and uracil (U) can be classified into three different
groups according to their physicochemical properties, i.e., ring
structures, secondary structures, and chemical functionality
(Chen et al., 2016b,c,d, 2017a,d; Feng et al., 2017). Therefore,
based on the different physicochemical properties, the four

coordinates (1, 1, 1), (0, 0, 1), (1, 0, 0), and (0, 1, 0) were used
to represent the four bases (A, C, G, and U) of RNA, respectively.

In order to include nucleotide composition surrounding the
modification site as well, the accumulated nucleotide frequency
of any nucleotide nj at position i was also used to represent RNA
sequences and was defined as

di =
1

|Ni|
∑l

j=1
f (nj), f

(

nj
)

=
{

1 if nj = q
0 other cases

(1)

where |Ni| is the length of the sliding substring concerned, l
denotes each of the site locations counted in the substring, qǫ{A,
C, G, U}.

By integrating both nucleotide physicochemical properties
and accumulated nucleotide frequency, an L nt long RNA
sequence could be represented a 4L-dimensional vector (Chen
et al., 2016b,c,d, 2017a,d; Feng et al., 2017).

Support Vector Machine
As an efficient supervised machine learning algorithm, SVM has
been widely used in the realm of bioinformatics (Cao et al., 2014;
Li et al., 2017; Wang et al., 2017b; Zhang et al., 2017). Its basic
idea is to transform the input data into a high dimensional feature
space and then determine the optimal separating hyperplane.

In the current study, the implementation of SVM was
performed by using the LibSVM package 3.18, available at http://
www.csie.ntu.edu.tw/~cjlin/libsvm/. The radial basis kernel
function (RBF) was used to obtain the classification hyperplane.
The grid searchmethod was applied to optimize its regularization
parameter C and kernel parameter γ .

Evaluation Metrics
The performance was evaluated by using the following four
metrics, namely sensitivity (Sn), specificity (Sp), Accuracy (Acc),
and the Mathew’s correlation coefficient (MCC), which can be
expressed as



















Sn = TP
TP+FN × 100%

Sp = TN
TN+FP × 100%

Acc = TP+TN
TP+FN+TN+FP × 100%

MCC = (TP×TN)−(FP×FN)√
(TP+FN)×(TP+FP)×(TN+FN)×(TN+FP)

(2)

where TP, TN, FP, and FN represent true positive, true negative,
false positive, and false negative, respectively.

To further evaluate the performance of the current method
more objectively, inspired by recent works (Wang et al., 2017a),
the ROC (receiver operating characteristic) curve was also
plotted. Its vertical coordinate indicates the true positive rate
(sensitivity) and the horizontal coordinate indicates the false
positive rate (1-specificity). The area under the ROC curve
(auROC) is an indicator of the performance quality of a binary
classifier, i.e., the value 0.5 of auROC is equivalent to random
prediction while the value 1 of auROC represents a perfect one.
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TABLE 1 | The 10-fold cross validation predictive results by using different

negative datasets for identifying m6A sites in E. coli.

Dataset Sn (%) Sp (%) Acc (%) MCC

Negative set 1 100.00 98.59 99.29 0.98

Negative set 2 100.00 98.78 99.39 0.98

Negative set 3 100.00 98.44 99.22 0.98

Negative set 4 100.00 98.88 99.44 0.98

Negative set 5 100.00 98.44 99.22 0.98

Negative set 6 100.00 98.49 99.25 0.98

Negative set 7 100.00 98.54 99.27 0.98

Negative set 8 100.00 98.69 99.34 0.98

Negative set 9 100.00 98.49 99.25 0.98

Negative set 10 100.00 98.25 99.12 0.97

Average 100.00 98.56 99.28 0.98

RESULTS AND DISCUSSIONS

Performance for m6A Site Identification
In statistical prediction, independent dataset test, K-fold cross-
validation test and jackknife test are often used to derive the
metric values for a predictor (Chou, 2011). In order to saving
computational time, the 10-fold cross-validation test was used
to examine the performance of the proposed method. In 10-fold
cross-validation test, the samples in the dataset are randomly
partitioned into 10 equal sized sub-datasets. Of the 10 sub-
datasets, a single sub-dataset is retained as the validation data
for testing the model, and the remaining 9 sub-datasets are used
as training data. The process is then repeated 10 times, with
each of the 10 sub-datasets used exactly once as the validation
data.

By encoding RNA sequences using nucleotide chemical
property and accumulated nucleotide frequency, each sample in
the dataset was represented by a (4 × 41) = 164-dimensional
vector and used as the input of SVM. The 10-fold cross-validation
test results for identifying m6A sites in E. coli were listed in
Table 1. In addition, to demonstrate that whether its accuracy
is sensitive to the selection of negative data, the method was
also tested on the other nine negative datasets, respectively.
Their predictive results of the 10-fold cross-validation were also
provided in Table 1.

As indicated in Table 1, we found that the predictive accuracy
is not affected by the selection of negative data. In addition,
the 10 ROC curves obtained based on the 10 different negative
datasets were also plotted in Figure 1. It was found that their
auROCs are all higher than 0.98. These results demonstrate
the reliability and robustness of the model developed in this
study.

Comparison With Other Methods
In order to demonstrate the effectiveness of nucleotide
chemical property and accumulated nucleotide frequency
for identifying m6A sites in E. coli, we compared the
performance of the proposed method with that of the
method based on other commonly used RNA sequence

FIGURE 1 | The ROC curves of 10-fold cross validation test for identifying

m6A sites in E. coli based on different negative datasets. The vertical

coordinate is the true positive rate (Sn) while horizontal coordinate is the false

positive rate (1-Sp).

TABLE 2 | Comparison of different parameters for identifying m6A sites in E. coli.

Parameters Sn (%) Sp (%) Acc (%) MCC

PseKNC 65.74 60.29 63.02 0.26

Secondary structure 67.06 60.73 63.89 0.28

Our method 100.00 98.56 99.28 0.98

features. Chen et al. have proposed the pseudo nucleotide
composition (PseKNC) to represent RNA sequences (Chen
et al., 2014a,b), in which both the local and global sequence
order information w included. Since it has been proposed
in 2014, PseKNC have been used in in many branches
of computational genomics (Guo et al., 2014; Lin et al.,
2014, 2017). Therefore, we employed the SVM to perform
the comparisons between the model based on nucleotide
chemical property and accumulated nucleotide frequency
features and that based on the PseKNC features (Chen et al.,
2015a). The 10-fold cross-validation test results were listed in
Table 2.

As indicated in a recent study (Schwartz et al., 2013), the
m6A modification is also affected by RNA secondary structures.
Therefore, we performed the prediction of m6A sites by using
RNA secondary structure. To this end, all the sequences in
the benchmark dataset were encoded by using their second
structures. The details about the encoding scheme based on
secondary structures can be found in a recent work (Xue et al.,
2005). By doing so, each RNA sequence is converted to a 32
dimensional vector (Xue et al., 2005) and used as the input feature
of SVM. Its 10-fold cross-validation test results were also listed in
Table 2.

As shown in Table 2, the predictive performance of the
method based on nucleotide chemical property and accumulated
nucleotide frequency is dramatically higher than that based on
PseKNC and RNA secondary structure.
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Validation on Independent Dataset
The proposed method trained based on the benchmark dataset
from the E. coli genome was further used to identify the m6A sites
in the P. aeruginosa genome. For this purpose, we firstly collected
the 5,814 experimentally confirmed m6A sites from the RMBase
to form an independent dataset, which is given in Supporting
Information S2. Of the 5,814m6A sites in the P. aeruginosa, 5,809
were correctly identified, indicating that the proposed method
is really quite promising for identifying m6A sites in microbial
genomes.

CONCLUSION

In this study, we present a computational method to identify
m6A sites in the E. coli genome by encoding the RNA sequences
using nucleotide chemical property and accumulated nucleotide
frequency. The results obtained based on the benchmark dataset
and independent dataset demonstrate that the proposed method
is powerful and promising in discovering m6A sites. We hope
that the proposed method will be helpful for the future research
on m6A sites in microbial genomes.

Since user-friendly and publicly accessible web-servers (Feng
et al., 2018)and databases (Liang et al., 2017) represent the
direction of developing new prediction method, we will make
efforts in our future work to provide a web-server for the method
presented in this paper.
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