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Abstract: The soluble carrier hormone binding protein (HBP) plays an important role in the growth 

of human and other animals. HBP can also selectively and non-covalently interact with hormone. 

Therefore, accurate identification of HBP is an important prerequisite for understanding its biological 

functions and molecular mechanisms. Since experimental methods are still labor intensive and cost 

ineffective to identify HBP, it’s necessary to develop computational methods to accurately and 

efficiently identify HBP. In this paper, a machine learning-based method was proposed to identify 

HBP, in which the samples were encoded by using the optimal tripeptide composition obtained based 

on the binomial distribution method. In the 5-fold cross-validation test, the proposed method yielded 

an overall accuracy of 97.15%. For the convenience of scientific community, a user-friendly 

webserver called HBPred2.0 was built, which could be freely accessed at 

http://lin-group.cn/server/HBPred2.0/. 
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1. Introduction 

Hormone-binding protein (HPB) is a kind of protein that selectively and non-covalently binds to 

hormone. HPB is a soluble outer region of the growth hormone receptor (HR), and is an important 

component of the growth hormone (GH)-insulin-like growth factor axis [1]. The abnormal 

expression of HBP can cause a variety of diseases [2]. Due to the complex in vivo effects of HBP, its 

biological function is still not fully understood [1]. Therefore, accurate identification of HBP will be 

helpful to understand the molecular mechanisms and regulatory pathways of HBP. 

Traditional methods to identify HBP were wet biochemical experiments, such as 

immunoprecipitation, chromatography, crosslinking assays, etc [3–6]. However, the disadvantages of 

these methods, such as time-consuming and expensive, make them are unable to keep up with the 

rapid growth of protein sequences in the post-genomic era. Therefore, it is necessary to develop 

automatics machine learning methods to identify HBP. As a pioneer work, Tang et al. developed a 

support vector machine-based method to identify HBP in which proteins were encoded using the 

optimal features obtained by adopting optimized dipeptide composition [7]. Subsequently, Basith et 

al. developed a computational predictor named iGHBP, in which an optimal feature set was obtained 

based on combining dipeptide composition and amino acid index value by adopting two-step feature 

selection protocol [8]. However, the overall accuracy was still far from satisfactory. In order to 

improve the performance for the identification of HBP, it is necessary to apply new feature extraction 

and selection methods to select optimal features to represent HBP. 

 

Figure 1. The framework of this work. 

In this paper, by examining 5 feature encoding methods and 2 feature selection methods, we 

investigated the advantages and disadvantages of various models for identifying HBP and then 
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established a predictor called HBPred2.0 based on the optimal model. Finally, a user-friendly 

webserver was established for HBPred2.0. The paper is organized based on the following aspects 

(Figure 1): (1) The construction of benchmark dataset, (2) feature extraction and selection, (3) 

machine learning method, and (4) performance evaluation. 

2. Materials and methods 

2.1. Benchmark dataset and independent dataset 

This paper adopted the benchmark dataset built by Tang et al. [7]. In the database, there are 123 

hormone-binding proteins (HBPs) and 123 none hormone-binding proteins (non-HBPs). To verify 

the portability and validity of the model, we built a high quality independent dataset by obeying 

following rules. Firstly, we selected the 357 manually annotated and reviewed HBP proteins from 

Universal Protein Resource (UniProt) [9] using ‘hormone-binding’ as keywords in molecular 

function item of Gene Ontology. Subsequently, we excluded the proteins with sequence identity > 60% 

by using CD-HIT [10]. Thirdly, sequences that appear in the training dataset were excluded. As a 

result, 46 HBPs were obtained as independent positive samples. Negative samples were randomly 

selected from UniProt while using ‘hormone’ and ‘DNA damage binding’ as keywords in molecular 

function item of Gene Ontology, respectively. The sequence identities of negative samples are also 

  60%. Finally, 46 non-HBPs (37 hormone proteins and 9 DNA damage binding proteins) were 

randomly obtained. It should be noted that there is no similar sequences between the training and 

testing data. All data could be downloaded from 

http://lin-group.cn/server/HBPred2.0/download.html. 

2.2. Feature extraction methods 

2.2.1 Natural vector method (NV) 

Suppose a sample protein P with L residues, it can be expressed as below. 

                          (1) 

where    represents the i-th amino acid residue of the sample protein P;             The 

Natural Vector Method (NV) method is briefly described as follows [11]: 

For each of the 20 amino acid k, define: 

                      → (0, 1)          (2) 

where        = 1, if    = k. otherwise,        = 0. 

Let    be the number of amino acid k in the protein sequence P, which can be calculated as: 

          
 
                 (3) 

Let         be the distance from the first amino acid (regarded as origin) to the i-th amino acid k 

in the protein sequence. Let    be the total distance of each set of the 20 amino acids. Let    be 

the mean position of the amino acid k. And they can be calculated as: 

http://lin-group.cn/server/HBPred2.0/download.html
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Let   
  be the second-order normalized central moments, which can be calculated as: 

  
   

            
 

    

  
                (5) 

Thus, a sample protein P can be formulated as: 

           
            

            
           (6) 

where the symbol T is the transposition of the vector. 

2.2.2. Composition transition distribution (CTD) 

The CTD was first proposed for protein folding class prediction by Dubchak et al. in 1995 [12]. 

It’s a global composition feature extraction method includes hydrophobicity, polarity, normalized van 

der Waals volume, polarizability, predicted secondary structure, solvent accessibility and so on. In 

this method, 20 amino acids were divided into 3 different groups: polar, neutral, and hydrophobic. 

For each of the amino acids attributes, three descriptors (C, T, D) were calculated. ‘C’ stands for 

‘Composition’, which represents the composition percentage of each group in the peptide sequence, 

and thus can yield 3 features. ‘T’ stands for ‘Transition’, which represents the transition probability 

between two neighboring amino acids belonging to two different groups, and thus can yield 3 

features. ‘D’ stands for ‘Distribution’, which represents the position (the first, 25%, 50%, 75%, or 

100%) of amino acids in each group in the protein sequence, and thus can yield 5 features for each 

group (total 15 features).  

In this paper, the sequence description of a sample protein P in term of hydrophobicity consists 

of 3 + 3 + 15 = 21 features. 

2.2.3. G-gap dipeptide composition (g-gap) 

Adjacent dipeptide composition can only express the correlation between two adjacent amino 

acid residues. In fact, the amino acids with g-gap residues may be adjacent in three-dimensional 

space [13]. To find important correlations in protein sequences, we used the g-gap dipeptide 

composition that extends from adjacent dipeptides. A protein P can be formulated as below by using 

this method. 

      
 
   

 
     

 
      

 
 
 
          (7) 

where the symbol T is the transposition of the vector; the   
 

 is the frequency of the i-th (i = 

1,2,…,400) g-gap dipeptide and can be formulated as: 
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              (8) 

where   
 

 is the number of the i-th g-gap dipeptide; L is the length of the protein P; g is the number 

of amino acid residues separated by two amino acid residues. 

In this paper, we studied the cases of g ranging from 1 to 9 because the case of g = 0 has been 

studied in reference [7]. 

2.2.4. Pseudo amino acid composition (PseAAC) 

The PseAAC method can not only include amino acid composition, but also the correlation of 

physicochemical properties between two residues [14,15]. In this paper, we adopted the type Ⅱ 

PseAAC, in which a sample protein P can be formulated as below. 

                              
         (9) 

where ‘9’ is the number of amino acid physicochemical properties considered, namely, 

hydrophobicity, hydrophilicity, mass, pK1, pK2, pI, rigidity, flexibility and irreplaceability; ‘λ’ is the 

rank of correlation; ‘ ’ is the frequencies for each element and is formulated as: 

     

  

   
   
        

  
   

                 

   

   
   
        

  
   

               
       (10) 

where ω is the weight factor for the sequence order effect;    is the frequency of the 400 dipeptides; 

   is the correlation factor of the physicochemical properties between residues. More detailed 

information about the formula derivation process can be found in the reference [16].  

In this paper, the parameter λ is from 1 to 95 with the step of 1, the parameter ω is from 0.1 to 1 

with the step of 0.1. Therefore, 95 10 = 950 feature subsets based on PseAAC will be obtained. 

2.2.5. Tripeptide composition (TPC) 

Tripeptide is composed of three adjacent amino acids in a protein sequence, which is a 

biosignaling with minimal functionality. By adopting TPC, a sample protein P can be formulated by： 

                      
            (11) 

where the symbol T is the transposition of the vector; the    is the frequency of the i-th (i = 

1,2,…,8000) tripeptide and can be formulated as: 

   
  

   
               (12) 

where    is the number of the i-th tripeptide; L is the length of the protein P. 
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2.3. Feature selection methods 

2.3.1. Analysis of variance (ANOVA)  

Feature selection is important to improve the classification performance. It can filter the noisy 

features [17–20]. We adopted the ANOVA method to select optimal features from g-gap dipeptide 

compositions and PseAAC. The ANOVA method calculated the ratio of the variance among groups 

and the variance within groups for each attribute [21,22]. The formula expressions can be described 

as follows: 

     
  
    

  
    

              (13) 

where      is the score of the i-th feature, a high     -value means a high ability to identify the 

sample;   
     is the variance within groups;   

     is the variance among groups; and they can be 

calculated as follows: 

 
  
     

      

   

  
     

      

   

               (14) 

where        is the sum of the squares between the groups;        is the sum of squares within 

the groups; K is the total number of classes; N is the total number of samples. 

2.3.2. Binomial distribution (BD) 

We adopted the BD method to select optimal features from tripeptide composition [21]. In this 

algorithm, the confidence level (CL) of each feature can be calculated by: 

        
   

         
  
       

      
     

       (15) 

where      is the confidence level for the i-th tripeptide in the j-th type; j denotes the type of 

samples (positive sample or negative sample);    is the total number of the i-th tripeptide in the 

dataset; the probability    is the relative frequency of type j in the dataset;  

According to the formula as defined in Eq. (15), a high CL-value means a high ability to 

identify the sample. The BD method can extract the over-represented motifs, which is an excellent 

statistical method widely used in bioinformatics [23,24]. 

2.3.3. Incremental feature selection (IFS) process 

In general, if a model was built on a low-dimensional feature subset, it will not provide enough 

information. On the contrary, if a model was built on a high-dimensional feature subset, it can lead to 

information redundancy and overfitting problems. Therefore, the ANOVA and BD method with the 

IFS process and 5-fold cross-validation was applied to investigate the optimal feature set with the 

maximum accuracy [7,25–27] (Figure 2). We ranked all features according to the F(i)-values or 

CL-values and obtained new feature vectors, which are shown below. 

javascript:;
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               (16) 

The first feature subset contains the feature with the highest F(i)-value or CL-value,       
   ; 

By adding the second highest F(i)-value or CL-value to the first subset, the second feature subset 

      
    

    is formed. The procedure was repeated until all features were considered. 

 

Figure 2. The framework of the IFS process. 

2.4. Support vector machine (SVM) 

The support vector machine (SVM) is a supervised machine learning method and has been 

widely used in bioinformatics [28–33]. Its main idea is to map the input features from 

low-dimensional space to a high-dimensional space through nonlinear transformation and find the 

optimal linear classification surface. For convenience, SVM software packages LibSVM can be 

download from https://www.csie.ntu.edu.tw/~cjlin/libsvm/. In the current study, the LibSVM-3.22 

package was adopted to investigate the performance for identifying HBP. Besides, the radical basis 

function kernel was selected to perform predictions. The grid search spaces are [2
-5

, 2
15

] with step of 

2 for penalty parameter C and [2
3
, 2

-15
] with step of 2

-1
 for kernel parameter g. 

2.5. Performance evaluation 

Three cross-validation methods, namely, the independent dataset test, the sub-sampling test, and 

the jackknife test, are widely used to investigate the performance of a predictor in practical 

application [30,34–41]. In order to save computing time, the 5-fold cross-validation test was adopted 

to calculate the optimal parameter C and g of SVM in this paper. 

Five evaluation indexes were adopted to evaluate the models [42–49]. Sensitivity (  ) is used to 

evaluate the model’s ability to correctly predict positive samples. Specificity (  ) is used to evaluate 

the model’s ability to correctly predict negative samples. Overall Accuracy (   ) reflects the 

proportion of the entire benchmark dataset that can be correctly predicted. The Matthew correlation 

coefficient (   ) is used to evaluate the reliability of the algorithm. Area under the ROC curve 

(AUC) reflects model’s classification ability across decision values .  They can be 

calculated as follows:  

javascript:;
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where TP, TN, FP, and FN represent the number of the correctly recognized positive samples, the 

number of the correctly recognized negative samples, the number of negative samples recognized as 

positive samples, and the number of positive samples recognized as negative samples, respectively. 

3. Results and discussion 

3.1. Performances of different features 

In this study, we examined the performance of 5 feature extraction methods and their 

combinations. Based on CTD, NV, CTD+NV methods, protein samples can be expressed as 21-D 

(dimensional), 60-D and 81-D vector, respectively. The    s of 60.16%, 70.33% and 67.07% were 

obtained by using SVM in the 5-fold cross-validation, respectively (as shown in Table 1). It was 

found that the prediction performances were far from satisfactory. 

Based on the g-gap method, a protein sample can be expressed as a 400-D vector. By changing 

the value of g from 1 to 9, we obtained 9 feature subsets. Firstly, we investigated the performances of 

these 400-D features subsets based on SVM. The results were reported in Figure 3A. Subsequently, 

the ANOVA method with the IFS process was applied to investigate the optimal feature set, and the 

results were recorded in Figure 3B. One may notice that while g = 1, a maximum     of 80.89% 

was obtained when the top 144 features were used. Obviously,    s were significantly increased by 

adopting ANOVA method. However, prediction performances still needed to improve. 

Based on the PseAAC method, we obtained 95 10 = 950 (95 kinds of λ and 10 kinds of ω) 

feature subsets. Firstly, we investigated the performances of these 950 models by using SVM in the 

5-fold cross-validation test and reported the results in Figure 4A. It was found that the maximum 

    of 76.83% was achieved when λ = 18 and ω = 0.1. In order to improve    , the ANOVA 

method was adopted to rank the 400 + 18   9 = 572 features. By adopting SVM with IFS, a 

maximum     of 84.15% was obtained when the top 194 features were used (Figure 4B). Although 

the result was encouraging, the     still has room to rise. 

Table 1. The results and the corresponding number of features based on different methods. 

Feature extraction C g   (%)   (%)    (%) Mcc AUC 

CTD (21-D) 2 2
3
 36.59 83.74 60.16 0.230 0.654 

NV (60-D) 2
-5

 2
-13

 70.73 69.92 70.33 0.407 0.762 

CTD+NV (81-D) 2
9
 2

-7
 70.73 63.41 67.07 0.342 0.709 

javascript:;
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Figure 3.    s for g-gap dipeptide composition. (A) Different g values corresponding to 

different    s; (B) A plot showing the IFS curves based on g-gap methods. 

 

Figure 4.    s for g-gap dipeptide composition. (A) A heat map for the    s of 950 

PseAAC models; (B) A plot showing the IFS curve based on PseAAC method. 

 Based on the TPC method, 8000 features were extracted for each protein sequence. Considering 

that it would lead to overfitting problem, the BD method was adopted as the feature selection method. 

By adopting SVM with IFS process in the 5-fold cross-validation test, a maximum     of 97.15% 

was obtained when the top 1169 features were used (Figure 5). In this case, the       and Mcc are 

96.75%, 97.56%, and 0.943, respectively The AUC reached 0.994, this result indicates that the 

performance of the model based on the optimal TPC is smart and reliable for identifying HBP. 

(A) (B) 

(A) (B) 
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Figure 5. A plot showing the IFS curve based on TPC method.  

3.2. Comparison with other methods 

In order to show the superiority of SVM to identify HBP, we compared its performance with 

those of other machine learning algorithms based on the same feature subset (i.e. 1169 optimal 

features). From Table 2, we can find that the SVM classifier could produce the best performance 

among these algorithms. Thus, the final model was constructed based on SVM.  

Table 2. Comparing SVM with other classifiers. 

Classifier    (%)    (%)     (%) Mcc AUC 

J48 63.41 56.91 60.16 0.204 0.601 

Bagging 80.49 57.72 69.11 0.392 0.770 

Random Forest 88.62 84.55 86.59 0.732 0.945 

Naive Bayes 95.93 92.68 94.31 0.887 0.965 

SVM 96.75 97.56 97.15 0.943 0.994 

 

It is also necessary to compare the methods proposed in this paper with existing methods. Table 

3 shows the detailed results of different methods for identifying HBP. Based on the same benchmark 

dataset, Tang et al. achieved an     of 84.9% by using a SVM-based method, in which proteins 

sequences were encoded using the optimal 0-gap dipeptide composition features obtained by the 

ANOVA feature selection technique [7]. Basith et al. obtained an     of 84.96% in cross-validation 

test by training an extremely randomized tree with optimal features obtained from dipeptide 

composition and amino acid index values based on two-step feature selection [8]. Our proposed 

method could produce an     of 97.15% which is superior to the two published results, 

demonstrating that our method is more powerful for identifying HBP. 
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Table 3. Comparing our method with other published methods. 

Reference Methods    (%)    (%)     (%) Mcc AUC 

[7] HBPred 88.6 81.3 84.9 - - 

[8] iGHBP 88.62 81.30 84.96 - 0.701 

This work HBPred2.0 96.75 97.56 97.15 0.943 0.994 

3.3. Performance evaluation based on the independent dataset 

For further comparing the performance of these methods, an independent dataset was used. The 

results were recorded in Table 4. One may observe that the HBPred2.0 predictor achieved the best 

performance among the three predictors, suggesting that HBPre2.0 has better generalization ability. 

Table 4. Performance evaluation based on the independent dataset. 

Reference Methods    (%)    (%)     (%) Mcc AUC 

[7] HBPred 80.43 56.52 68.48 0.381 0.714 

[8] iGHBP 86.96 47.83 67.39 0.380 - 

This work HBPred2.0 89.13 80.43 84.78 0.698 0.814 

Specificity could reflect the discriminated capability of model on negative samples. From the 

Table 4, a higher specificity of the HBPred2.0 indicates that the model could produce less false 

positives. 

4. Conclusion 

In this paper, we systematically investigated the performances of various features and classifiers 

on HBP prediction. By a great number of experiments, we obtained the best model by combining 

SVM with optimal tripeptide composition. This model could produce the overall accuracy of 84.78% 

on the independent data. Finally, Due to published database [50–53] and webserver [54–63] could 

provide more convenience for scientific community, we established a free webserver for the 

proposed method, called HBPred2.0, which can be free accessed form 

http://lin-group.cn/server/HBPred2.0/. We expect that the tool will help scholars to study the 

mechanism of HBP’s function, and promote the development of related drug research. 

Acknowledgments 

This work was supported by the National Nature Scientific Foundation of China (61772119, 

31771471, 61702430), Natural Science Foundation for Distinguished Young Scholar of Hebei 

Province (No. C2017209244), the Central Public Interest Scientific Institution Basal Research Fund 

(No. 2018GJM06). 

Conflicts of interest 

The authors declare that there is no conflict of interest. 



 2477 

Mathematical Biosciences and Engineering  Volume 16, Issue 4, 2466–2480. 

References   

1. G. Baumann, Growth hormone binding protein. The soluble growth hormone receptor, Minerva. 

Endocrinol., 27 (2002), 265–276. 

2. J. A. Kraut and N. E. Madias, Adverse effects of the metabolic acidosis of chronic kidney disease, 

Adv. Chronic. Kidney Dis., 24 (2017), 289–297. 

3. F. Sohm, I. Manfroid and A. Pezet, et al., Identification and modulation of a growth 

hormone-binding protein in rainbow trout (Oncorhynchus mykiss) plasma during seawater 

adaptation, Gen. Comp. Endocrinol., 111 (1998), 216–224. 

4. Y. Zhang and T. A. Marchant, Identification of serum GH-binding proteins in the goldfish 

(Carassius auratus) and comparison with mammalian GH-binding proteins, J. Endocrinol., 161 

(1999), 255–262. 

5. I. E. Einarsdottir, N. Gong and E. Jonsson, et al., Plasma growth hormone-binding protein levels 

in Atlantic salmon Salmo salar during smoltification and seawater transfer, J. Fish Biol., 85 

(2014), 1279–1296. 

6. S. Fisker, J. Frystyk and L. Skriver, et al., A simple, rapid immunometric assay for determination 

of functional and growth hormone-occupied growth hormone-binding protein in human serum, 

Eur. J. Clin. Invest., 26 (1996), 779–785. 

7. H. Tang, Y. W. Zhao and P. Zou, et al., HBPred: a tool to identify growth hormone-binding 

proteins, Int. J. Biol. Sci., 14 (2018), 957–964. 

8. S. Basith, B. Manavalan and T. H. Shin, et al., iGHBP: Computational identification of growth 

hormone binding proteins from sequences using extremely randomised tree, Comput. Struct. 

Biotechnol. J., 16 (2018), 412–420. 

9. L. Breuza, S. Poux and A. Estreicher, et al., The UniProtKB guide to the human proteome, 

Database (Oxford), 2016 (2016). 

10. L. Fu, B. Niu and Z. Zhu, et al., CD-HIT: accelerated for clustering the next-generation 

sequencing data, Bioinformatics, 28 (2012), 3150–3152. 

11. K. Tian, X. Zhao and S. S. Yau, Convex hull analysis of evolutionary and phylogenetic 

relationships between biological groups, J.Theor. Biol., 456 (2018), 34–40. 

12. I. Dubchak, I. Muchnik and S. R. Holbrook, et al., Prediction of protein folding class using global 

description of amino acid sequence, Proc. Natl. Acad. Sci. U S A, 92 (1995), 8700–8704. 

13. H. Tang, W. Chen and H. Lin, Identification of immunoglobulins using Chou's pseudo amino acid 

composition with feature selection technique, Mol. Biosyst., 12 (2016), 1269–1275. 

14. K. C. Chou, Some remarks on protein attribute prediction and pseudo amino acid composition, J. 

Theor. Biol., 273 (2011), 236–247. 

15. K. C. Chou, Prediction of protein cellular attributes using pseudo-amino acid composition, 

Proteins, 43 (2001), 246–255. 

16. F. Y. Dao, H. Yang and Z. D. Su, et al., Recent advances in conotoxin classification by using 

machine learning methods, Molecules, 22 (2017), in press. 

17. Q. Zou, S. Wan and Y. Ju, et al., Pretata: predicting TATA binding proteins with novel features 

and dimensionality reduction strategy, BMC System. Biol., 10 (2016), 114. 

18. L. Wei, R. Su and B. Wang, et al., Integration of deep feature representations and handcrafted 

features to improve the prediction of N
6
-methyladenosine sites, Neurocomputing, 324 (2019), 

3–9. 



 2478 

Mathematical Biosciences and Engineering  Volume 16, Issue 4, 2466–2480. 

19. G. H. Huang and J. C. Li, Feature extractions for computationally predicting protein 

post-translational modifications, Curr. Bioinform., 13 (2018), 387–395. 

20. Q. Zou, J. Zeng and L. Cao, et al., A novel features ranking metric with application to scalable 

visual and bioinformatics data classification, Neurocomputing, 173 (2016), 346–354. 

21. H. Y. Lai, X. X. Chen and W. Chen, et al., Sequence-based predictive modeling to identify 

cancerlectins, Oncotarget, 8 (2017), 28169–28175. 

22. X. X. Chen, H. Tang and W. C. Li, et al., Identification of bacterial cell wall lyases via pseudo 

amino acid composition, Biomed. Res. Int., 2016 (2016), 1654623. 

23. X. J. Zhu, C. Q. Feng and H. Y. Lai, et al., Predicting protein structural classes for low-similarity 

sequences by evaluating different features, Knowled. System., 163 (2019), 787–793. 

24. H. Yang, W. R. Qiu and G. Q. Liu, et al., iRSpot-Pse6NC: Identifying recombination spots in 

Saccharomyces cerevisiae by incorporating hexamer composition into general PseKNC, Int. J. 

Biol. Sci., 14 (2018), 883–891. 

25. H. Yang, H. Tang and X. X. Chen, et al., Identification of secretory proteins in mycobacterium 

tuberculosis using pseudo amino acid composition, Biomed. Res. Int., 2016 (2016), 5413903. 

26. C. Q. Feng, Z. Y. Zhang and X. J. Zhu, et al., iTerm-PseKNC: a sequence-based tool for 

predicting bacterial transcriptional terminators, Bioinformatics, (2018), in press. 

27. F. Y. Dao, H. Lv and F. Wang, et al., Identify origin of replication in Saccharomyces cerevisiae 

using two-step feature selection technique, Bioinformatics, (2018), in press. 

28. H. Lin, Z. Y. Liang and H. Tang, et al., Identifying sigma70 promoters with novel pseudo 

nucleotide composition, IEEE/ACM Trans. Comput. Biol. Bioinform., (2017), in press. 

29. W. Chen, H. Yang and P. Feng, et al., iDNA4mC: identifying DNA N4-methylcytosine sites 

based on nucleotide chemical properties, Bioinformatics, 33 (2017), 3518–3523. 

30. W. Chen, P. Feng and T. Liu, et al., Recent advances in machine learning methods for predicting 

heat shock proteins, Curr. Drug Metab., (2018), in press. 

31. D. Li, Y. Ju and Q. Zou, Protein folds prediction with hierarchical structured SVM, Curr. 

Proteom., 13 (2016), 79–85. 

32. N. Zhang, S. Yu and Y. Guo, et al., Discriminating ramos and jurkat cells with image textures 

from diffraction imaging flow cytometry based on a support vector machine, Curr. Bioinform., 13 

(2018), 50–56. 

33. H. Yang, H. Lv and H. Ding, et al., iRNA-2OM: A sequence-based predictor for identifying 

2'-o-methylation sites in homo sapiens, J. Comput. Biol., 25 (2018), 1266–1277. 

34. P. M. Feng, H. Ding and W. Chen, et al., Naive Bayes classifier with feature selection to identify 

phage virion proteins, Comput. Math. Methods Med., 2013 (2013), 530696. 

35. B. Manavalan, S. Subramaniyam and T. H. Shin, et al., Machine-learning-based prediction of 

cell-penetrating peptides and their uptake efficiency with improved accuracy, J. Proteom. Res., 

17 (2018), 2715–2726. 

36. P. M. Feng, W. Chen and H. Lin, et al., iHSP-PseRAAAC: Identifying the heat shock protein 

families using pseudo reduced amino acid alphabet composition, Anal. Biochem., 442 (2013), 

118–125. 

37. P. M. Feng, H. Lin and W. Chen, Identification of antioxidants from sequence information using 

naive Bayes, Comput. Math. Method. Med., 2013 (2013), 567529. 

38. P. Feng, H. Yang and H. Ding, et al., iDNA6mA-PseKNC: Identifying DNA 

N(6)-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC, 



 2479 

Mathematical Biosciences and Engineering  Volume 16, Issue 4, 2466–2480. 

Genomics, (2018), in press. 

39. W. Chen, P. M. Feng and E. Z. Deng, et al., iTIS-PseTNC: a sequence-based predictor for 

identifying translation initiation site in human genes using pseudo trinucleotide composition, 

Anal. Biochem., 462 (2014), 76–83. 

40. L. Z. Yuan, E. F. Yong and Z. Wei, et al., Using quadratic discriminant analysis to predict protein 

secondary structure based on chemical shifts, Curr. Bioinform., 12 (2017), 52–56. 

41. W. Chen, H. Lv, and F. Nie, et al., i6mA-Pred: Identifying DNA N6-methyladenine sites in the 

rice genome, Bioinformatics, (2019), in press. 

42. Y. Bao, S. Marini and T. Tamura, et al., Toward more accurate prediction of caspase cleavage 

sites: a comprehensive review of current methods, tools and features, Brief Bioinform., (2018), in 

press. 

43. H. Tang, C. M. Zhang and R. Chen, et al., Identification of secretory proteins of malaria parasite 

by feature selection technique, Letter. Organic Chem., 14 (2017), 621–624. 

44. H. Tang, R. Z. Cao and W. Wang, et al., A two-step discriminated method to identify thermophilic 

proteins, Int. J. Biomath., 10 (2017), in press. 

45. S. Patel, R. Tripathi and V. Kumari, et al., DeepInteract: Deep neural network based 

protein-protein interaction prediction tool, Curr. Bioinform., 12 (2017), 551–557. 

46. R. Z. Cao, B. Adhikari and D. Bhattacharya, et al., QAcon: single model quality assessment using 

protein structural and contact information with machine learning techniques, Bioinform., 33 

(2017), 586–588. 

47. R. Cao, C. Freitas and L. Chan, et al., ProLanGO: Protein function prediction using neural 

machine translation based on a recurrent neural network, Molecules, 22 (2017), in press. 

48. B. Manavalan, T. H. Shin and M. O. Kim, et al., PIP-EL: A new ensemble learning method for 

improved proinflammatory peptide predictions, Front. Immunol., 9 (2018), 1783. 

49. B. Manavalan, T. H. Shin and G. Lee, PVP-SVM: Sequence-based prediction of phage virion 

proteins using a support vector machine, Front. Microbiol., 9 (2018), 476. 

50. T. Cui, L. Zhang and Y. Huang, et al., MNDR v2.0: an updated resource of ncRNA-disease 

associations in mammals, Nucleic Acids Res., 46 (2018), D371–D374. 

51. T. Zhang, P. Tan and L. Wang, et al., RNALocate: a resource for RNA subcellular localizations, 

Nucleic Acids Res., 45 (2017), D135–D138. 

52. Y. Yi, Y. Zhao and C. Li, et al., RAID v2.0: an updated resource of RNA-associated interactions 

across organisms, Nucleic Acids Res., 45 (2017), D115–D118. 

53. Z.Y. Liang, H.Y. Lai and H. Yang, et al., Pro54DB: a database for experimentally verified 

sigma-54 promoters, Bioinformatics, 33 (2017), 467–469. 

54. J. Song, Y. Wang and F. Li, et al., iProt-Sub: a comprehensive package for accurately mapping 

and predicting protease-specific substrates and cleavage sites, Brief Bioinform., (2018), in press. 

55. J. Song, F. Li and A. Leier, et al., PROSPERous: high-throughput prediction of substrate cleavage 

sites for 90 proteases with improved accuracy, Bioinformatics, 34 (2018), 684–687. 

56. R. Cao and J. Cheng, Integrated protein function prediction by mining function associations, 

sequences, and protein-protein and gene-gene interaction networks, Methods, 93 (2016), 84–91. 

57. W. Chen, P.M. Feng and E.Z. Deng, et al., iTIS-PseTNC: a sequence-based predictor for 

identifying translation initiation site in human genes using pseudo trinucleotide composition, 

Anal. Biochem., 462 (2014), 76–83. 

58. I. Naseem, S. Khan and R. Togneri, et al., ECMSRC: A sparse learning approach for the 



 2480 

Mathematical Biosciences and Engineering  Volume 16, Issue 4, 2466–2480. 

prediction of extracellular matrix proteins, Curr. Bioinform., 12 (2017), 361–368. 

59. R. Z. Cao, D. Bhattacharya and J. Hou, et al., DeepQA: improving the estimation of single 

protein model quality with deep belief networks, BMC Bioinform., 17 (2016), in press. 

60. B. Manavalan, S. Basith and T. H. Shin, et al., MLACP: machine-learning-based prediction of 

anticancer peptides, Oncotarget, 8 (2017), 77121–77136. 

61. B. Manavalan, S. Basith and T. H. Shin, et al., mAHTPred: a sequence-based meta-predictor for 

improving the prediction of anti-hypertensive peptides using effective feature representation, 

Bioinformatics, (2018), in press. 

62. B. Manavalan, R. G. Govindaraj and T. H. Shin, et al., iBCE-EL: A New Ensemble Learning 

Framework for Improved Linear B-Cell Epitope Prediction, Front. Immunol., 9 (2018), 1695. 

63. B. Manavalan, T. H. Shin and G. Lee, DHSpred: support-vector-machine-based human DNase I 

hypersensitive sites prediction using the optimal features selected by random forest, Oncotarget, 

9 (2018), 1944–1956. 

 

©2019 the author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 

 


