个人简介

李静,1995年生, 研究方向包括药物发现、阿尔兹海默症的研究、机器学习、数据挖掘、生物信息学、生物计算。 谷歌学术

主要经历

论文成果

  1. UniSCL: Unified subcellular localization and feature interpretability analysis for mRNA and lncRNA. 2025 (Manuscript completed, in preparation).
  2. Li J, Su X, Liu Q, Wang Y. Multi-class pattern discovery for bacterial secretory effectors[J]. Submitted to journal of Computational Biomedicine, 2025.
  3. Li J, Liu Q, Zou Q, Zhan C. TXSelect: A multi-task learning model to identify secretory effectors[J]. PLOS Computational Biology, 2025. JCR Q1.
  4. Li J, Sun H, Shu X, Yuan S. SMCseeker: an attentive virtual screening model for antiviral discovery[J]. iScience, 2025. JCR Q1.
  5. Li J, Zou Q, Zhan C. AttenRNA: multi-scale deep attentive model with RNA feature variability analysis. Briefings in Bioinformatics, 2025. JCR Q1.
  6. Li J, Siwen L, Yat-fung S, et al. An aid diagnostic platform to detect the transition of mild cognitive impairment (MCI) to Alzheimer's disease (AD). Current Bioinformatics, 2025. JCR Q2.
  7. Li J, Ju Y, Zou Q, et al. LncRNA localization and feature interpretability analysis[J]. Molecular Therapy Nucleic Acids, 2024. JCR Q1.
  8. Li J, He S, Zhang J, et al. T4Seeker: a hybrid model for type IV secretion effectors identification[J]. BMC biology, 2024, 22(1): 259. JCR Q1, 中科院 Q1
  9. Li J, Zou Q, Yuan L. A review from biological mapping to computation-based subcellular localization[J]. Molecular Therapy-Nucleic Acids, 2023, 32: 507-521. JCR Q1.
  10. Chen J, Zou Q, Li J. DeepM6ASeq-EL: prediction of human N6-methyladenosine (m 6 a) sites with LSTM and ensemble learning[J]. Frontiers of Computer Science, 2022, 16: 1-7. JCR Q1.
  11. Li J , He S, Guo F, et al. HSM6AP: a high-precision predictor for the Homo sapiens N6-methyladenosine (m^ 6 A) based on multiple weights and feature stitching[J]. RNA biology, 2021, 18(11): 1882-1892. JCR Q2.
  12. Li J , Zhang L, He S, et al. SubLocEP: a novel ensemble predictor of subcellular localization of eukaryotic mRNA based on machine learning[J]. Briefings in Bioinformatics, 2021, 22(5): bbaa401. JCR Q1.
  13. Li J , Wei L, Guo F, et al. EP3: an ensemble predictor that accurately identifies type III secreted effectors[J]. Briefings in Bioinformatics, 2021, 22(2): 1918-1928. JCR Q1.
  14. Li J , Zhu P, Zou Q. Prediction of thermophilic proteins using voting algorithm. 7th International Work-Conference, IWBBIO 2019, Granada, Spain.

专利成果

  1. 宋又强;李静。轻度认知障碍到阿尔茨海默病辅助诊断平台。2025.中国专利申请中(已公布)。
  2. 邹权;李静;杜军平。mRNA亚细胞定位模型训练方法、定位方法及可读存储介质。2021。中国发明专利,已授权。
  3. 邹权;李静;杜军平。一种甲基化位点识别方法及装置。2021。中国发明专利,已授权。
  4. 邹权;李静;丁漪杰;杜军平。一种III型分泌系统效应蛋白识别方法及装置。2021。中国发明专利,已授权。

联系方式