<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"> <title>disease gene prediction</title> <style type="text/css"> .download { border: 2px solid #a1a1a1; margin: 0px auto; padding-top: 10px; background: #EEE9E9; width: 50%; border-radius: 15px; font-size: 20px; height: 20%; } #menu { height: 30px; margin: 0 auto; background-color: #003366; } #menu table tr td a { font-size: 18px; color: white; text-decoration: none; display: block; width: 195px; } </style> <link href="css/ppgallery.css" rel="stylesheet" type="text/css" /> <link href="css/jquery-ui-1.8.6.custom.css" rel="stylesheet" type="text/css" /> <script type="text/javascript" src="js/jquery.min.js"></script> <script type="text/javascript" src="js/jquery-ui.min.js"></script> <script type="text/javascript" src="js/ppgallery.js"></script> <script type="text/javascript"> $(document).ready(function() { $('#gallery').ppGallery(); }); function test(t) { t.bgColor = "#A9A9A9"; } function fuck(tt) { tt.bgColor = "#FF7F24"; } </script> </head> <body style="padding-top: 0px; margin-top: 0px; padding-bottom: 0px; margin-bottom: 0px; background-color: #003366; font-family: arial, verdana, sans-serif;"> <br/> <div align="center"> <div style="width: 1000px;"> <div id="logo" align="left" style="height: 150px;"> <!-- <img style="float:left; repeat-x" width="60%" height="130px;" src="resources/logor.jpg"/> --> <img width="100%" height="150px" src="resource/log1.jpg" /> </div> <div id="menu" style="width: 1000px; background-color: #FF7F24"> <table width="1000px"> <tr align="center" style="height: 26px;"> <td width="250px" onmouseover="test(this)" onmouseout="fuck(this)"><a href="index.jsp"><b>Home</b></a></td> <td width="250px" onmouseover="test(this)" onmouseout="fuck(this)"> <a href="guideline.jsp"><b>Guideline</b></a> </td> <td width="250px" bgcolor="#A9A9A9"><a href="download.jsp"><b>Download</b></a></td> <td width="250px" onmouseover="test(this)" onmouseout="fuck(this)"> <a href="aboutus.jsp"><b>About Us</b></a></td> </tr> </table> </div> <div id="content" align="center" style="padding-top: 0; margin-top: 0; height: 100%; background-color: #E8F3FE; font-size: 18px;"> <br /> <p align="left"> <strong> Data of experiment</strong> </p> <table align="center" width="900px;" style="border: 1px #DCEBFE solid; height: 120px;"> <tr> <td align="left" colspan="3" valign="top" style="font-size: 18px;font-family:Times New Roman; padding-left: 5px; padding-top: 10px; padding-right: 5px; padding-bottom: 10px;"> In this study, we used the datasets that were used previously by <a href="http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0058977#pone-0058977-g009">Singh-Blom et al(2013)</a>. <br/> <br/> PPI network:<br/> either the <a href="http://bioinformatics.oxfordjournals.org/content/26/14/1759.abstract">HumanNet</a>(Mostafavi S and Morris Q, 2010) or <a href="http://bioinformatics.oxfordjournals.org/content/26/14/1759.abstract">HPRD</a> network. <br/>HumanNet contains 733,836 edges between genes with non-zero weights integrated from 21 different data sources. HPRD is an unweighted and much sparser PPI network that contains only 56,661 associations. <br/><br/> Gene-phenotype associations(eight non-human species):<br/> plants,worms,fruit flies, mice, yeast, Escherichia coli, zebrafish, and chickens. <br/><br/> phenotype similarities for human were derived solely from <a href="http://www.nature.com/ejhg/journal/v14/n5/full/5201585a.html"> Van Driel MA (2006)</a>. </td> </tr> </table> <p align="left"> <strong> Methods of experiment</strong> </p> <table align="center" width="900px;" style="border: 1px #DCEBFE solid; height: 120px;"> <tr> <td align="left" colspan="3" valign="top" style="font-size: 18px; font-family:Times New Roman; padding-left: 5px; padding-top: 10px; padding-right: 5px; padding-bottom: 10px;"> Here we propose two novel multipath methods, HeteSim_MultiPath (HSMP) and HeteSim_SVM (HSSVM), based on the HeteSim measure. <br/><br/>HSMP uses the HeteSim measure to calculate the similarity between nodes in heterogeneous networks. Then, the HeteSim scores of different paths are combined with a constant that dampens contributions from longer paths. <br/><br/>HSSVM also uses the HeteSim measure to calculate similarity. However, HSSVM uses a machine learning method instead of a constant to combine HeteSim scores. </td> </tr> </table> <p align="left"> All datasets and methods used in this paper can be download <a href="resource/gene_prediction.zip">here</a>.</p><p align="left"><br></p> </div> <div id="foot" align="center" style="height: 30px; background-color: #003366; color: #00BFFF; padding-top: 5px; margin-top: 0; font-weight: bold;"> Developed by <a href="" style="color: #FFFFFF;">Yuanlu Liao.</a> Copyright <a href="http://datamining.xmu.edu.cn/main/" style="color: #FFFFFF;">DMLab@XMU</a>. All Rights Reserved. </div> </div> </div> </body> </html>