<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>disease gene prediction</title>
<style type="text/css">
.download {
	border: 2px solid #a1a1a1;
	margin: 0px auto;
	padding-top: 10px;
	background: #EEE9E9;
	width: 50%;
	border-radius: 15px;
	font-size: 20px;
	height: 20%;
}

#menu {
	height: 30px;
	margin: 0 auto;
	background-color: #003366;
}

#menu table tr td a {
	font-size: 18px;
	color: white;
	text-decoration: none;
	display: block;
	width: 195px;
}
</style>

<link href="css/ppgallery.css" rel="stylesheet" type="text/css" />
<link href="css/jquery-ui-1.8.6.custom.css" rel="stylesheet"
	type="text/css" />
<script type="text/javascript" src="js/jquery.min.js"></script>
<script type="text/javascript" src="js/jquery-ui.min.js"></script>
<script type="text/javascript" src="js/ppgallery.js"></script>
<script type="text/javascript">
	$(document).ready(function() {
		$('#gallery').ppGallery();
	});
	function test(t) {
		t.bgColor = "#A9A9A9";
	}
	function fuck(tt) {
		tt.bgColor = "#FF7F24";
	}
</script>

</head>
<body
	style="padding-top: 0px; margin-top: 0px; padding-bottom: 0px; margin-bottom: 0px; background-color: #003366; font-family: arial, verdana, sans-serif;">
	<br/>
	<div align="center">
		<div style="width: 1000px;">
			<div id="logo" align="left" style="height: 150px;">
				<!-- <img style="float:left; repeat-x" width="60%" height="130px;" src="resources/logor.jpg"/> -->
				<img width="100%" height="150px" src="resource/log1.jpg" />
			</div>
			<div id="menu" style="width: 1000px; background-color: #FF7F24">
				<table width="1000px">
					<tr align="center" style="height: 26px;">
						<td width="250px" onmouseover="test(this)" onmouseout="fuck(this)"><a
							href="index.jsp"><b>Home</b></a></td>
						<td width="250px" onmouseover="test(this)" onmouseout="fuck(this)">
							<a href="guideline.jsp"><b>Guideline</b></a>
						</td>
						<td width="250px" bgcolor="#A9A9A9"><a href="download.jsp"><b>Download</b></a></td>
						<td width="250px" onmouseover="test(this)" onmouseout="fuck(this)">
					<a href="aboutus.jsp"><b>About&nbsp;Us</b></a></td>
					</tr>
				</table>
			</div>
			<div id="content" align="center"
				style="padding-top: 0; margin-top: 0; height: 100%; background-color: #E8F3FE; font-size: 18px;">
				<br />
				<p align="left">
					<strong>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Data
						of experiment</strong>
				</p>
				<table align="center" width="900px;"
					style="border: 1px #DCEBFE solid; height: 120px;">
					<tr>
						<td align="left" colspan="3" valign="top"
							style="font-size: 18px;font-family:Times New Roman; padding-left: 5px; padding-top: 10px; padding-right: 5px; padding-bottom: 10px;">
							In this study, we used the datasets that were used previously by <a href="http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0058977#pone-0058977-g009">Singh-Blom et al(2013)</a>.
							<br/>
							<br/>
							PPI network:<br/> 
							either the <a href="http://bioinformatics.oxfordjournals.org/content/26/14/1759.abstract">HumanNet</a>(Mostafavi S and Morris Q, 2010) or <a href="http://bioinformatics.oxfordjournals.org/content/26/14/1759.abstract">HPRD</a> network. 
							<br/>HumanNet contains 733,836 edges between genes with non-zero weights integrated from 21 different data sources. HPRD is an unweighted and much sparser PPI network that contains only 56,661 associations. 
							<br/><br/>
							Gene-phenotype associations(eight non-human species):<br/> 
							plants,worms,fruit flies, mice, yeast, Escherichia coli, zebrafish, and chickens.
							<br/><br/>
							phenotype similarities for human were derived solely from <a href="http://www.nature.com/ejhg/journal/v14/n5/full/5201585a.html"> Van Driel MA (2006)</a>.
						</td>
					</tr>
				</table>
				<p align="left">
					<strong>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Methods
						of experiment</strong>
				</p>
				<table align="center" width="900px;"
					style="border: 1px #DCEBFE solid; height: 120px;">
					<tr>
						<td align="left" colspan="3" valign="top"
							style="font-size: 18px; font-family:Times New Roman; padding-left: 5px; padding-top: 10px; padding-right: 5px; padding-bottom: 10px;">
							Here we propose two novel multipath methods, HeteSim_MultiPath (HSMP) and HeteSim_SVM (HSSVM), based 
							on the HeteSim measure.
							<br/><br/>HSMP uses the HeteSim measure to calculate the similarity between nodes in 
							heterogeneous networks. Then, the HeteSim scores of different paths are combined with a constant that 
							dampens contributions from longer paths.
							<br/><br/>HSSVM also uses the HeteSim measure to calculate similarity. 
							However, HSSVM uses a machine learning method instead of a constant to combine HeteSim scores. 
						</td>
					</tr>
				</table>
				<p align="left">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;All datasets and methods 
					used in this paper can be download <a href="resource/gene_prediction.zip">here</a>.</p><p align="left"><br></p>
			</div>
			<div id="foot" align="center"
				style="height: 30px; background-color: #003366; color: #00BFFF; padding-top: 5px; margin-top: 0; font-weight: bold;">
				Developed by <a href=""
					style="color: #FFFFFF;">Yuanlu Liao.</a> Copyright <a
					href="http://datamining.xmu.edu.cn/main/" style="color: #FFFFFF;">DMLab@XMU</a>.
				All Rights Reserved.
			</div>
		</div>
	</div>
</body>
</html>