Using the conda command to install SBSM onto your computer:
conda install -c malab -c conda-forge sbsm
Sbsm is a command-line tool that can be run by simply typing sbsm
, results as shown in the figure below
The common commands for training using sbsm are shown below, which will result in a trained model file results.model
.
sbsm -t train_samples.fasta train_labels.txt
The common commands for testing using sbsm are shown below, which will result in a predicted label file predicted_label.txt
.
sbsm -p results.model test_samples.fasta
The sbsm tool offers a variety of options to customize the training and prediction processes:
-c, --c
: Penalty coefficients for support vector machines. Default value: [64]-a, --alpha
: Control parameter for kernel parameterization. Default value: [-1]-m, --match
: Match score. Default value: [1]-x, --mismatch
: Mismatch penalty. Default value: [-1]-g, --gap
: Gap penalty. Default value: [-2]-k, --kneighbors
: In HCKDM, k represents the number of neighboring kernels chosen for local kernel selection. Default value: [15]-l, --lambda
: Ratio parameter of the global kernel alignment in both global and local kernel alignments. Default value: [0.9]-n1, --nu1
: Regularization parameter for the Laplacian graph regularization term. Default value: [0.01]-n2, --nu2
: Regularization parameter for the L2 regularization term. Default value: [0.01]-h, --help
: Print the help usage information.-v, --version
: Show the version number of sbsm.Download the manual of SBSM.
Download manual